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FIGURE 9.15 Drag Coefficient Versus Reynolds Number for Long Circular Cylinders and Spheres in
Cross-Flow

Average drag coefficient Cj, for cross flow over a cylinder and sphere are shown in Fig. 9.15. Then, the drag
force acting on the body in cross flow is obtained from:

NI

Fp = Cp A p2 N

where Ay, is the ‘frontal area’ i.e. area normal to the direction of flow.

Ay=LD -for a cylinder of length L
and, Ay = % ...for a sphere

In Fig. 9.15, there are 5 sections, a, b, ¢, d and e shown, Comments corresponding to these sections of the
figure are given below:

(a) At Re < 1, inertia forces are negligible and the flow adheres to the surface and drag is only by viscous
forces. Heat transfer is purely by conduction.

(b) At Re = about 10, inertia forces become appreciable; now, pressure drag is about half of the total drag

{c) At Re of the order of 100, vortices separate and the pressure drag predominates.

(d) At Re values between about 1000 and 100,000, skin friction drag is negligible compared to the pressure
drag. Point of separation is at about & = 80 deg. measured from the stagnation point.

(e) At Re > 100,000, flow in the boundary layer becomes turbulent and the separation point moves to the
rear,

Heat transfer coefficient: Because of the complex nature of flow, most of the results are empirical relations
derived from experiments.

Variation of local Nusselt number around the periphery of a cylinder in cross ﬂow is given in Fig. 9.16. Nu
is high to start with at the stagnation point, then decreases as #increases due to the thickening of laminar bound-
ary layer. For the two curves at the bottom, minimum is reached at about & = 80 deg., the separation point in
laminar flow. For the rest of the curves, there is a sharp increase at about & = 90 deg. due to transition from
laminar to turbulent flow; Nu reaches d second minimum at about 8 = 140 deg. due to flow separation in turbu-
lent flow, and thereafter increases with #, due to intense mixing in the turbulent wake region.

Between 8 = 0 and 80 deg. empirical equation for loci.l,heat transfer coefficient is:

3
Nu(g = D - 1.14. [BH.?.J pro4 .[1«»(1) } -{9.89)
. k I 90
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800 While calculating heat transfer coefficient for a cylinder
1 in cross flow, of practical interest is the average heat transfer
700 coefficient over the entire surface. A comprehensive relation
& for cross flow across a cylinder is given by Churchill and
600 " Bernstein:
ii E 2y i 1\
e - o
70, N = = 215
— kD 62-Re2.pp3
S ol 2B Nugy = —— o34 OSTRZ P +[ R"; ]3
2 ;‘?\T\ \\f \ 273 28200
0.413
300 1422
ZTANKY %p;p [ Pr)
200 )\i'\‘\
i\ .(9.90)
100 Eq. 9.90 is valid for 100 < Re < 107, and Re.Pr > 0.2 and
correlates very well all available data. Fluid properties are

0 20 30 1207 780 evaluated at ‘film temperature’, Ty = (T, + T,)/2 = average of
5 = Degrees from stagnation point surface and free stream temperatures.
In the mid-range of Reynolds numbers, i.e. 20,000 < Re <
FIGURE 9.16 Circumferential Variation of the 400,000, it is suggested that following equation be used:
Heat Transfer Coefficient at High Reynolds

Numbers for a Circular Cylinder in Cross Flow WD 062-R % p % R 1
(W.H. Gied) Nity = £ =03 4 —one r1-1+( £ ]2
A 2 7g 28200
1+ [E]S
Pr
..{9.91)
for 20,000 < Re < 400,000, and Re-Pr > 0.2
Below Pe = (Re.Pr) = 0.2, following relation is recomumended by Nakai and Okazaki:
1 -1

Nu, =|0.8237 - In Pe2 {for Pe < 0.2..(3.92))

For Egs. 9.91 and 9.92 also, properties are evaluated at the film temperature.
For heat transfer from a single cylinder in cross flow, for liquid metals, following relation is recommended
by Ishiguro et. al.;

Nugy = 1.125-(Re- Pr)*%3 (for 1 < Re.Pr < 100...(9.93)}
However, note that Eq. 9.90 is quite comprehensive and is also valid for liquid metals.
For circular cylinder in cross flow, for gases, following relation is widely used:

1
Nu = C-Re" Pr? ..(9.94)

where, values of C and n are given in Table 9.5:

TABLE 9.5 Valves of C and n in Ey. 9.94

0.989

0.911 0.285
0.683 0.466
0.193 0.618
0.0266 0.805
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All fluid properties are taken at film temperature.
For non-circular cylinders:
Again, Eq. 9.94 is applicable.
For non-circular cylinders, Fig. 9.17 below, gives the values of C and # to be used in Eq. 9.94. This figure also
shows the characteristic dimension ‘D’ used to calculate the Reynolds number, for each geometry.
Flow across spheres:
For gases, McAdams recommends following relation:

Nitgy, = 0.37-Re¢ {for 25 < Re < 100,000...{9.95))
For flow of liquids past spheres, Kramers suggests following relation:
Nugy, -Pr®? = 097 + 0.68-Re"® (for 1 < Re < 2000...(9.96))

In Eq. 9.95 and 9.96, fluid properties are evaluated at film temperature.
A comprehensive equation for gases and liquids flowing past a sphere is given by Whitaker:

13 2
Nitgy = 2 + [0.4-R32 + 0.06-Re3]-Pr°-4-[ﬁ] (9.97)

Hy

Eq. 9.97 is valid for: 3.5 < Re <-80,000 and 0.7 < Pr < 380. Here, fluid properties are evaluated at free stream
temperature. ) .

A special case is that of heat and mass transfer from freely falling liquid drops and the following correla-
tion of Ranz and Marshall is applicable:

1 1
Nit,, =2 + 0.6 Re2 - Pr3 (9.972)
_ Re [ n
U—>» Q D 5x10°-10° 0246  0.588
Square
u—>p D § D 5x10° - 10° 0.102 0.675
Square
O—A—D 5x10°-1.95x 10"  0.16 0.638
U—>mp
o & 1.95x10* - 10° 0.0385 0.782
Hexagon
U—>» <:>—jk D 5% 10° - 10° 0.153  0.638
A A
Hexagon
A
Uu—>» I D 4x10°-15x10° 0228 0731
Vertical plate
u4©§o 25x10°-15x10" 0224 0612
Ellipse

—
U—p O D 3x10°-15x10"  0.085 0.804
LN

Ellipse
FIGURE 9.17 Conslonts C and n for cross flow over noncircular cylinders
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For heat transfer from a sphere to a liquid metal, following correlation is recommended:
1
Nugy, =2 + 0.386-(Re-Pr)? (for 36,000 < Re < 200,000...(9.98))
In Eq. 9.98, fluid properties are to be evaluated at film temperature.

9.9.2 Flow Across Bluff Objects
Normal flat plate (width D):

2
Nip = 0.20-Rep 3 {for 1 < Re < 4 x 10°..{9.99))
Half round cylinder of dia. D, with flat surface at rear:
2
Nup = 0.16-Rep, 3 {for 1 < Re < 4 x 10°...(9.100))

In Egs. 9.99 and 9.100, fluid properties are evaluated at film temperature.

9.9.3 Flow Through Packed Beds

Here, a gas or liquid flows through a bed packed with solid particles (such as spheres, cylinders or commercial
packings like Raschig rings, ceramic saddles etc.). During the ‘charging cycle’, the hot fluid, while passing
through the bed, gives up its 'heat’ to the solid particles, and during the “discharge cycle’, the incoming cooler
fluid picks up the stored heat from the solid particles.

Packed beds are used in catalytic reactors, grain dryers, storage of solar thermal energy, gas chromatogra-
phy, regenerators and desiccant beds.

Reynolds number in the correlations is based on a ‘superficial velocity” U, i.e. the fluid velocity that would
exist if the bed were empty. Characteristic length used is the equivalent diameter of the packing, D, Another
parameter that appears in some correlations is the void fraction, &, i.e. the fraction of bed volume that is empty.

- Whitaker recommends following relation for heat transfer between the gas and packings (including cylin-
ders with diameter equal to height, spheres, or several types of commercial packings such as Raschig rings,
partition rings or Berl saddles):

2 1

h-D 1 1 2
Gt N Sl 05-Ref +0.02-Red |-Pr3 .{9.101)

k

where h, is the average heat transfer coefficient

Eq. 9.101 is valid for: 20 < Rep, < 10,000, and 0.34 < £ < 0.78.

Packing diameter D, is defined as six times the volume of the particle divided by the particle surface area;
for a sphere, D, = diameter of sphere. All properties are evaluated at bulk fluid temperature (One may use the
average of inlet and outlet temperature of the heat exchanger). In the above correlation, Reynolds number is
defined as:

D,-u
Rep = —FL "%
7 v(1-e)
Eq. 9.101 does not correlate data well for cube packings.

To determine the heat transfer from the wall of a packed bed to a gas, Beek recommmends the following
relation, for particles like cylinders, which can pack next to the wall:

h-D 1
“—F =258 Rep,, Pr3 +0.094-Refyy -Pro .(9.102)
and, for particles like spheres, which contact the wall at one point:
h;-D, : 2 08 ., 0.4
= . Pr3 . . -
= 0.203 Ii(e,:_’),J Pr3 +0.220 Rer Pr -.(9.103)

In Eqs. 9.102 and 9.103, properties of fluid are evaluated at the film temperature. Also, the Reynolds number

is:

ulep < 2000

" 40 < Rep, =
Dp Vv
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whtceire D, is the diameter of sphere or cylinder. For other types of packings, Whitaker’s definition of D, may be
used.

Beek also gives the correlation for the friction factor:

D, A 1-¢ 1-¢

P P
_F. = — 1.75 + 150 (9104
L p~u§ £ [ £pp ( )

f=

where Ap is the pressure drop over a length L of the packed bed.

Example 9.12.  Air at 35°C flows across a cylinder of 50 mm diameter at a velocity of 50 m/s. The cylinder surface is
maintained at 145°C. Find the heat loss per unit length. Properties at mean temperature of 90°C are: p = 1 kg/m>, g =20
x 107 kg/(ms), k = 0.0312 W/(mC), C, = 1.0 kj/(kgC).

Use the relation: Nup, = 0.027.(Rep)"55 (pr)/? MU]
Salution.
Data:
o o T.+7T, .
T,=145°C  T,:=35°C V:=50m/s D:=005m L:=1m (assumed) = 3 te. Ty =90°C

Properties at Tj:

#i=20x 10 kg/(ms) k= 00312 W/(mC)  C,=1000]/(kgC) pi=1kg/m’ A= zDLm?
le. A=0157 m®

Reynolds number:

Re = DV.p
]
ie. Re = 1.25 x 10°
Prandt]l number:
Pr.= Gk
k
ie. Pr=0.641
Nusselts number:
We have:

1
Nup: = 0.027 -Re"¥®.pr3
e Nup = 295122
Therefore, heat transfer coefficient:

P kNup
) D
ie # o= 184.156 .. W /(m®C).

Heat transferred, {J:

Q= hA(T,-T)
ie. Q=3182x10°W
Exemple 9.13. A hot wire probe is 5 mm in length, 10 zm diameter wire with an electrical resistance of 150 ohms/m. The
wire is maintained at a constant temperature of 50°C. If the the probe is kept in an air stream flowing at a velocity of 10
m/s and at 1 bar and 25°C, determine the current required to maintain the wire temperature at 50°C.
Solution.

Data:
T+T,
2

T, :=50°C T, = 25°C U:=10m/s D=10x10%m L:= 0005m Ty = te. Tp=375°C

Properties at T£:
vi= 167 x 107 m¥/s k= 002704 W/(mK)  Pr:=0.706
Reynolds number:

Re := Q ie. Re = 5988
v
Therefore, Re-Pr = 4,228
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Since Re.Pr > 0.2, we can use the correlation of Churchill and Bernstein, viz.

L 5 % .
2-Re? - Prd 0
Nugi = |03 062 Re? Pr” +[ Re J“ (9.90)
27 28200
1+ (Qi) :
Pr
ie. iy = 1491 (Nusselt number)
Therefore, heat transfer coefficient:
- Nitgy -k
ie. h = 4,081 x 10° W/(mC) (heat transfer coefficient)
Heat transferred (:
Q= h(mD-LT, - T W
ie. I=0016 W (heat dissipated = 16 mW)
This is also equal to the value of electrical power dissipated; = P.R
R :=150.0.005 ohms (electrical resistance of the wire)
ie. R = 0.75 ohms
Therefore, current flow required:
Q
I= J= Am
{5 ane
ie I=0145 A (current flow required.)
Alternatively:
To calculate Nu we can also use Eq. 9.94:
1
Nu = C-Re".Pr? {9.94)
Then, for circular cylinder, we get for Re = 5.988, from the Table 9.5:
C:=0911 and =n = 0385
1
Therefore, Nti := C-Re"-Pr3
ie. Nu = 1.616
And,
oo Nu-k
D
ie. h = 4.369 x 10° W/(m’C) {heat transfer coefficient)
Therefore, Q=h(rD-L)(T,-T) W
ie. Q=0017 W (heat dissipated = 17 mW)

This value is almost the same as obtained by the correlation of Churchill and Bernstein.
Therefore, current flow required:

I:= EAmp

ie I=0151 A (current flow required.)
Exemple 9.84.  Air at 25°C flows across an elliptical tube 6 cm x 12 cm size, perpendicular to the minor axis with a
velocity of 3 m/s. Tube surface is maintained at 35°C. Determine the value of convection coefficient.

Solution.

Data:

T, :=55°C T,:=25°C U:=3m/s Di:=006m D;:=012m Ty =

Properties at T; = 40°C:
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ie.

vi=17.6 x 1008 m¥/s k= 0.0265 W/(mK)  Pr:= 071
Reynolds number:
See Fig. 9.17 for the case of flow across an ellipse.

Re = @b, ie Re=1023x10*
v
Then, we use Eq. 9.94, viz.
1
Nu = C-Re" Pr3

Values of C and n are obtained from Fig. 9.17 as:
C:=0224 and, m = 0612

1
Therefore, Nu := C-Re"- Pr?

Nu = 56.838
Heat transfer coefficient:
Therefore, h = Nis-k
Dl

k= 25.104 WHm*K)

(9.94)

..heat transfer coefficient.

Example 9.15. [n a packed bed heat exchanger, air is heated from 40°C to 360°C by passing it through a 10 cm diameter
pipe, packed with spheres of 8 mm diameter. The flow rate is 18 kg/h. Pipe surface temperature is maintained at 400°C.
Determine the length of bed required.
Solvtion.

Data:

ie.

ie.

“in

T, = 400°C Ty, = 40°C T = 360°C D: = 0.008 m dpipet = 0.1 M
18

air = m

Average air temperature = (40 + 360) /2 =200°C

Therefore, average film temperature = (200 + 400)/2 = 300°C

Taking properties of air at 300°C:

e, my, =5x10"kg/s

pi= 059 kg/m?  C,i= 1047 J/(kgK) k= 00429 W/(mK)  vi=492x 107 m

Equivalent particle diameter = 6 X volume/surface area = D for a sphere

D, := 0.008 m

Therefore, superficial velocity:

m._.
U, .= —5—
T F
4
U, = 1068 m/s
Reynolds number:
Therefore,
u,-n,
Rep, =
v

Rep, = 173.684

Nusselts number:
We use Eq. 9.103, viz.

h, D, Lol
"k ? := 0.203 Reg, Pr¥ + 0.220-Rely-Pr®*
u,-n,
for 40 < Rep, = ——— < 2000
v
h,-D,
e 12.888

FORCED CONVECTION
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.(9.103)




Heat transfer coefficient
12.888-k

h, = 5 W/ (m?K) {heat transfer coefficient)
P
ie h, = 69112 W/ (m’K) (heat transfer coefficient)
Now, heat gained by air, Q = heat transfer between the wall surface and air
i.e Q= G (Toue - T W
i.e. Q=165Bx10°W (heat gained by air)

This should be equal to heat transfer between the wall surface and air = h,x pipe surface area x LMTD

Here, LMTD is the ‘log mean temperature difference’ between the pipe surface and the air stream. Since the tem-
perature of air stream goes on changing along the length of heat exchanger, we use a mean temperature difference
between the pipe surface and this air stream, given by LMTD.

LMTD is defined as follows:

LMTD = Al = Al (see chapter on Heat exchangers for derfvation of this equation for LMTD)

m[ATm]

AT]TII“ - !
ATy =T, - Ty ie AT, = 360°C

ATpini= T = Toue i€ AT, = 40°C

Therefore, LMID := ATy = ATy
AT o
In| - max
)
ie LMTD = 145.638°C ~
Now, writing the heat balance, (} = 1, X pipe sutface area x LMTD , we get:
Q = b (mdyp L) LMTD
where L is the length of pipe (= height of bed)
. Q
e L = length of bed
ie hrdy, m (length of bed)
i.e. L=053m {length of bed.)

9.9.4 Flow Across a Bank of Tubes

Flow across a bank of tubes is practically a very important case. In many industrial heat exchangers, one of the
fluids flows inside the tubes in a shell and the second fluid flows through the shell, across the tubes. Typical
applications are: in waler tube boilers where water flows through the tubes and hot flue gases flow across these-
tubes, waste heat recovery systems, air conditioning applications and common ‘shell and tube’ heat exchangers
used in numerous industrial applications.

Tubes in a tube bank may be arranged either in an ‘in-line’ configuration or in a ‘staggered’ configuration, as
shown in Fig. 9.18. In the figure, S, is the ‘longitudinal pitch’, Sy is the ‘transverse pitch’ and S, is the ‘diagonal
pitch’.

Zhukauskas (1972) proposed the following correlation for Nusselts number, based on a large amount of
experimental data:

0.25
Nu, = fa D, C-(ReD)m~Pr°'36-(£] {9.105)
k T
where Nu, is the average Nusselts number
h, is the average heat transfer coefficient
Rep = (@ p Uy /2
Pr is the bulk Prandtl number
Pr,, is the wall Prandtl number
And,

urrnax = ST :
Sr-D

{for ﬁligned arrangement...(9.106))
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FIGURE 9.18 Flow across a tube bank

STy
2(5p-Dy
Note: (i) While calculating Li,,,, for the staggered arrangement, calculate with both the Egs. 9.106 and 9.107 and

adopt the larger value so obtained. U is the velocity of fluid as it approaches the tube bank.

(ii) For gases, Prandtl number ratio may be dropped, since it does not have much influence

(iiiy All properties (except Pr,) are evaluated at free stream temperature

Eg. 9.105 gives very good prediction when the number of tube rows in the bank,

N > 20, and 0.7 < Pr < 500, and 1000 < Rep ., <2 % 10°. However, the equation can be used even when
N < 20, with a correction factor applied. If N = 4, error involved in prediction is about 25%.

Eq. 9.105 takes the following forms for various flow regimes:
For Laminar flow ( i.e. 10 < Rep, < 100}

and, U ax {for staggered arrangement...(9.107))

0.25
Nu, = 0.8.R3%4-Pr0'36-[;—r] (for In-line tubes...(9.108))
T
P 0.25
and, Nu, = 0.9- Re%‘4 -Pru'%-[P—rJ (for staggered tubes...(9.109))
Tw

These equations have been validated also in the range: 50 < Rep < 1000.
For transition regime (i.e. 1000 < Re, <2 % 10%):

0.25
Nu, = 0.27- Re%(’S .pr0-36 [-;;LJ (for In-line tubes, 57/, > 0.7..(9.110))
w
Note: S;/S; < 0.7 for in-line tubes, gives very ineffective heat exchanger and should not be used.
5 0.2 p 0.25
Nu, = 0.35.{ =L -Re%ﬁn P36 L {for staggered tubes, $;/5; < 2..{9.111))
SL Prw
P 0.25
and, Nu, = 0.40- RE?;,'GO P03 (P_r] (for staggered tubes, S1/ Sy greater than or equal to 2...(3.112))
T

For turbulent regime (i.e. Rep > 2 X 10°):

FORCED CONVECTION




Pr 0.25
_) ...for In-line tubes...(9.113))

Nu, = 0.021. Re};3*. py0-3 [

Pr,
Pr 0.25
Nu, = 0.022. Re%“-PrO‘P’f’{P—} (for staggered tubes, Pr > 1...(9.114))
r'iU
and, Nu, = 0.019. Re};* (for staggered tubes, Pr = 0.7...(9.115))
For staggered arrangement, with 5;/D = 2 and 5, /D = 1.4, we have the relation due to Achenbach:
Nu, = 0.0131- Re;™™ . pr23% .{9.116)

Eq. 9.116 is valid in the range 4.5 x 10° < Re, < 7 x 10°.
If the number of tube rows is < 20, a correction factor is applied to the calculated Nusselts number as
follows:
Nu‘LN = Nu,,'Cz (9117)
where Ny, ; is the Nusselts number for the actual tube bank with N < 20, and
Nu, is the value of Nusselts number calculated for N > 20, using one of the appropriate relations
given above
C, is the correction factor taken from Table 9.6.

TABLE 9.6 Correction foctor C, in Eq. 9.117 for N < 20

Alinged 0.70 0.80 0.86 0.90 0.92 0.95 0.97 0.98 0.99
Staggered 0.64 Q.76 0.84 0.89 0.92 0.95 0.97 0.98 0.99

Pressure drop: Pressure drop (in Pascals) for flow of gases over a bank of tubes is given by:

, 2 0.14
ap = 2 Cmax N [ﬂ_w) Pa..(9.118).
P Hp
where G, =mass velocity at minimum flow area = p.U_,,
- p = density, evaluated at free stream conditions
N = number of transverse rows
My = average free stream viscosity
Friction factor, f is given by:

f =025+ l:(STO.—l% -Ref,o'le (for staggered tubes..(9.119}}
i D
and,
oos 5
£ =10.044+ = | Rep™ (for in-line tubes..(9.120))
|:(_SI_—v_D ]0.43 + 1.]3~§
D
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Exemple 9.4,  Air at 1 bar and 20°C flows across a bank of tubes 10 rows high and 4 rows deep; air velocity is 8 m/s,
measured at the entry to the tube bank. Diameter of the tubes is 25 mm and surface temperature of the tubes is main-
tained at 80°C. Tubes are arranged in an in - line manner. 5; = §; = 37.5 mun. Calculate the total heat transfer per unit
length of the tube bank, and also the exit air temperature. Also, find out the pressure drop.
Solution.
Data:
T,=80°C T;:=20°C U:=8m/s 5:=00375m 5:=0035m D:=0025m
Reyonlds number:
This is based on L,,,. We have:
U
P S-D
ie. Upax = 24 m/s (maximum velocity)
Taking properties of air at free stream temperature of 20°C:
p = 1164 kg/m’ C,i= 1012 J/(kgK) k= 0.0251 W/(mK} vi= 157 x 10 m¥/s  Pr=071
umax ! D

{for aligned arrangement...(9.106))

Therefore, Rep:

v
ie. Rep = 3.822 x 10* : (Reynolds number)
Nusselts number:

Since Reynolds number is between 1000 and 200,000 which is in the transition regime, the appropriate equation for
average Nusselts number is:

0.25
Nu, = 0.27.1{3[,0-‘*‘..!31—03"-[;1-] for in-line tubes, S/8; > 0.7..{9.110)
Yor :

The last term, i.e. the ratio of Prandtl numbers can be neglected for gases: So, we have:
Nu, := 0.27-Ref - pr0%

ie. Nu, = 183.923 {Nusselts number)
Therefore, average heat transfer coefficient is:

b, = %ﬁ W/ (m*C) (average hent transfer coefficient)

ie h, = 184.658 W/(m’C) (average heat transfer coefficient (N > 20))

This is the value of heat transfer coefficient that would be obtained if there were 20 rows of tubes in the direction of
flow. But, in the present case, there are only 4 rows in the direction of flow. So, from the Table, we get the correction
factor as:

C, = 0.90
Therefore, actual heat transfer coefficient is = 184.658 x 0.9 (actual average heat transfer coefficient)
Le. h, = 166.193 W/(m’C) (actual average heat transfer coefficient)
Surface area for heat transfer for unit length of tubes is:
A= (10-4)-(x-D-1) m¥/m (for 10 rows high, 4 rows deep)
ie A =3142 m*/m.

Total heat transfer rate (:
Now, total heat transfer rate is given by Newton's law:
Q=h-A-AT
Here AT is the average temperature difference between the wall and the air stream. However, temperature of air
stream goes on changing from entry to exit in the heat exchanger. So, we use a ‘mean temperature difference’ called
LMTD (log mean temperature difference). Expression for LMTD is derived in the chapter on heat exchangers. For the
present, let us take for LMTD:

(.I; —Ti)_(Ts _To)
In L-T
L-T,
We need the exit temperature T, of the air stream. This is calculated by a heat balance:

Q = h,-A.(LMTD) :
mass_flow: = p-LI-10-S; .kg/s (mass flow rate; 10 rows high Sy is transverse distance)

LMTD =
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ie mass_flow = 3.492 kg/s

Then, we can write the heat balance:

h-A-LMTD = mass_ﬂow-Cp-(Tn -1y

Substitute for LMTD and solve for T,.

Use Solve block of Mathcad; assume a guess value for T, to start with, say T, = 70°C. Then type ‘Given’ and write
the constraint; then type Find (T,) and get the answer:

T,:=70 (guess value)
Given

(T,-T)~(L,-T.)

oA ) = mass_flow-C, (T, - T)

) In L-T

T.-T,

Find (T}) = 28.241

ie. . T, = 28.241°C {exit air temperature)
Therefore, heat transfer rate, (:

(T. -T) - (I, - T,)
In L-T
Ts - Tu
ie. Q = 2.912 x 10* W/m = 29.12 kW/m

Alternatively, we can use the arithmetic average value of air stream between the inlet and outlet temperature, since
this is simpler to calculate and error involved will not be much:

Q:=h A

Then, Q= h,,'A'|:Ts —[TO; L J] = mass_flow-C,-(T, - T)
Using Solve block as earlier, to obtain T
0 =70 (guess value)
Given
Q= h,,AA-[TS W(T"*Tf ]] = mass_flow-C,(T, - T)
Find (T,) = 28.255
ie. T, = 28.255°C (exit air temperature)
i.e. we get practically the same value for To as obtained earlier.
T, +T,
And, Q= hﬂ-A-[Ts —[ u 3 '):| W/m
ie. 0 = 2917 x 10* W/m = 29.17 kWim.,
Pressure drop:
We have:
.2 0.14
ap = Zf Cmax N (P_w] Pa (9.118)
2 Hp
Goaw = p- U, kg/sm? (mass velocity)
ie. Gpax = 27.936 kg/s.m? (mass velocity)
N=4 (number of transverse rows)
0.08-(i]
fr= 004y ————2 o | RS {for in-ling tubes...{9.120))
ST -D .G+1.13‘ST
%5
ie. F=0.065 (friction factor)
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#, = 2079 x 107 kg/ms (dynamic viscosity of air at 80°C)

= 18.46 % 107 kg/ms (dynamic viscosity of air at average free stream temperature of 24.5°C)
Therefore,
: , 2 0.14
Ap = 2f G N (’”—w} Pa
p Hp
ie. Ap = 354.613 Pa = 0.003546 bar

9.10 Flow Inside Tubes

Circular tubes are the most commonly used geometry for cooling and heating applications, in industry. Often,
tubes of other geometries such as square or rectangle are also used. We are interested in heat transfer in such
cases; pressure drop occurring during flow is also of interest since it has a direct bearing on the pumping power
required to cause the flow.

Observe the major difference between the external flows just studied and the internal flow through pipes: in
the external flow, say over a flat plate, there was a free surface of fluid and the boundary layer was free to grow
indefinitely; however, in a pipe flow, the flow is confined within the pipe and the boundary layer growth is
limited to grow only upto the centre of the pipe.

9.10.1 Hydrodynamic and Thermal Boundary Layers for Flow in a Tube

Consider a fluid entering into a circular pipe, with a uniform velocity U (See Fig, 9.19). Fluid layer coming in
contact with the pipe surface comes to a complete halt and the adjacent layers slow down gradually due to
viscosity effects, Since the total mass flow in a section must remain constant, velocity in the central portion
increases. As a result, a ‘velocity boundary layer’ develops along the pipe. Thickness of the velocity boundary
layer increases along the flow length until the entire pipe is filled up with the boundary layer, as shown. "Hydro-
dynamic entry length (L)’ is the distance from the entry point to the point where the boundary layer has devel-
oped upto the centre. In the region beyond the hydrodynamic entry length, the velocity profile is fully developed
and remains unchanged; this is the ‘hydrodynamically developed region”. As will be shown later, velocity profile
in the fully developed region, in laminar flow, is parabolic; in turbulent flow, the velocity profile is a truncated
one.

Similarly, when a fluid at an uniform temperature enters a pipe whose wall is at different temperature, a
‘thermal boundary layer * develops along the pipe. Thickness of thermal boundary layer also increases along the
flow length till the boundary layer reaches the centre of the pipe. "Thermal entry length (L,)" is the distance from
the entry to the point where the thermal boundary layer has reached the centre, and is shown in the Fig. 9.19.
Beyond this point, along the length, we have the ‘fully developed flow” i.e. the flow is both hydrodynamically
and thermally fully developed.

Temperature profile may vary with x even in the thermally developed region. However, the dimensionless
temperature profile expressed as (T - T,)/ (T, - T;) remains constant in the thermally developed region, whether
the temperature of the pipe surface remains constant or the heat flux at the surface remains constant. (Tm is the
bulk or mean temperature at a given section).

Valocity boundary layer Velocity profile Thermal boundary layer Temperature profile
/ / e
> Nl
U ' T . d

> ] 1 i L 1

) Ln oLt P L Lt ot »
Hydrodynarmic entry Hydrodynamically Therrnal entry region Thermally
region developed region developed region

(a) Development of velacity boundary layer (b) Development of thermal boundary layer

FIGURE 9.19 Flow inside o pipe
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Relative growth of hydrodynamic and thermal boundary layers is controlled by the dimensionless Prandtl
number. For gases, Pr =1, and the hydrodynamic and thermal boundary layers essentlally coincide; for oils Pr >>
1 and the hydrodynamic boundary layer outgrows the thermal boundary layer, i.e. hydrodynamic entry length is
smaller for oils. For fluids with Pr << 1, such as liquid metals, thermal boundary layer outgrows the hydrody-
namic boundary layer and consequently, the thermal entry length is shorter than the hydrodynamic entry length.

Reynolds number is the dimensionless number that characterizes the flow inside a tube as laminar or turbu-
lent. Reynolds number is defined as:

Re = (U,.D)/v
where U, is the mean velocity in the pipe, and vis the kinematic viscosity of the fluid. Flow regimes are defined
as follows, depending upon the Reynolds number:

Re < 2300 {Laminar flow)
2300 < Re <4000 (Transition flow)
Re > 4000 (Turbulent flow)

Hydrodynamic and thermal entry lengths:

In laminar flow:

Ly jam = 0.05-Re-D ..(9.121a)
L jan = 0.05-Re-Pr-D .(9.121b)

In turbulent flow, hydrodynamic and thermal entry lengths are independent of Re and Pr and are generatly
taken to be:

Ly turb = Lyt = 10D (9.122)

The friction coefficient or shear stress at the surface is related to the slope of the velecity profile at the
surface. Since the velocity profile remains essentially constant in the hydrodynamically developed region, the
friction factor and the shear stress remain constant in the hydrodynamically developed region. By a similar argu-
ment, heat transfer coefficient also remains constant in the thermally developed region.

At the entry to the tube, thickness of the boundary layer is practically zero; so velocity and temperature
gradients at the surface are almost infinite at the entry, which means that the heat transfer coefficient and pres-
sure drop are the highest in the entry region and go on decreasing along the length.

Generally, in practice, turbulent flows prevail in heat transfer applications; length of pipes is also generally
much larger as compared to the hydrodynamic and thermal entrance lengths. Therefore, flow through pipes is
generally assumed to be fully developed over the entire length.

9.10.2 Velocity Profile for Fully Developed, Steady, Laminar Flow

Consider a fully developed, steady, laminar flow in a pipe. Consider a fluid element of length L and radius #, as
shown in Fig. 9.20.

We are interested to get the velocity profile and the pressure drop (or friction factor) during flow. This is
obtained by making a force balance on a cylindrical fluid element as shown in Fig. 9.20. Forces acting on the
element are: pressure forces at the ends and the shear forces on the surface; there is no change in momentum
since the velocities are same at both sections 1 and 2. So, writing a force balance:

(1 - po)-mr? = (2 mwr-L) ..{a}
du
But, T=-p—
ut w— (b)
Wiy, = 11— (FIR)]

A

< 1 R

* PEE S

Py

o o F pz
“+—
L

FIGURE. 9.20 Lominar flow through a pipe

FUNDAMENTALS OF HEAT AND MASS TRANSFER



{negative sign, since 7 is measured opposite to the direction of ).

So,
d (11 —
du -1 -p) @)
ar 2.u4-L
Separating the variables and integrating,
0 — _ R
J'ldu i (Tt 71 P8 .(d)
® 2-u4L r
‘i.e.
we L 1-py) (R? - 13 .(e)
4-u L
This can also be written as:
“ldp »
- 8P g2 (9123
e ® 9.123)
since, in differential form, @ = M
dx L

Negative sign in Eq. 9.123 indicates that pressure decreases in the flow direction. Also, note that the velocity
profile is parabolic.
Now, maximum velocity occurs at r = 0, i.e. at the centre:

. -1 dp >
ie. Upay = — ——R (9124
max = (9.124)
Eq. 9.124 gives the maximum velocity in the pipe.
From Eqgs. 9.123 and 9.124, we get:

r 2 l
Ho_q- [_J . .(9.125)

umax R
Average or mean velocity, u,,, is obtained by equating the volumetric flow to the integrated paraboloidal
flow:

g
u, mR? = J-u-(Z-Jr'r)dr
0

: Umax -1 dP 2
e. = = ——.—/—R {9.126
e “m= 7y 8- u dx (9.126)
Now, friction factor is defined by:
—dp _ f puy
—+t =L (9.12
dx D o2 ¢-127)
.urzn

where D is the pipe diameter and is the dynamic pressure.

Integrating Eq. 9.127, we get, ‘Darcy — Weisbach equation” for pressure drop:

S _ f ook (9.128)
L D 2
where Ap=p;-p, and, L=x,-x,
From Eqgs. 9.126 and 9.127, we get:
=4 .(9.129)
RE‘D
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Eq. 9.129 gives the friction factor for laminar flow (Re < 2000), in a pipe flow.
Since volumetric flow rate, = A.u,,, we can write for head loss:

n =7 _ 128-—9%"—‘- (9.130)
P z-D"-p
z RY
or, = EL (9131
82 L (p1-p2) ( )

Eq. 9.131 is known as ‘Hagen - Poiseuille equation’.
Darcy-Weisbach Eq. 9.128 is applicable to non-circular ducts also, if D is replaced by *hydraulic diameter
(D), defined by:

p, =242 (9.132)

where A is the area of cross-section and P is the wetted perimeter.
Values of product of friction factor and Reynolds number for two important duct configurations (viz. annu-
lar ducts and rectangular ducts) are given Tables 9.7 and 9.8 below:

TABLE 9.7 Annular ducts

0.001 74.68
0.01 80.1
0.05 86.27
.10 89.37
0.20 92.35
0.40 94.71
0.60 95.59
0.80 95.92
1.00 96.00

TABLE 9.8 Rectangular ducis

0.05 89.91
0.10 84.68
0.125 82.34
0.166 78.81
0.25 72.93
0.40 65.47
0.50 62.19
0.75 57.89
1.00 56.91

9.10.3 Heat Transfer Considerations in a Pipe
Most of the practical cases of heat transfer involving a pipe flow fall under two categories:
{a) surface heat flux on the pipe is constant, e.g. when the pipe is subjected to radiation or heated electrically
by winding an electric tape, or
(b) pipe surface temperature is constant, e.g. when there is condensation or boiling occurring on the surface
of the pipe.
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{(a} Constant surface heat flux, g,:
Let a fluid enter a pipe subjected to a constant surface heat flux 4., with a mean inlet temperature of T; and let the
mean exit temperature of fluid be T,. Then, the heat transfer rate can be written as:

Q= QSA = m'cp'(re -T) (9.133)
Or, the mean exit temperature of fluid may be written as:
‘A
T,=T,+ & (9.134)
m-C,

where A is the surface area of the pipe, m is the mass flow rate of fiuid and C, is its mean specific heat. Mean
fluid temperature, T,, increases linearly in the flow direction. The surface temperature is determined from:
g =h-(T,-T,) .{9.135}

When # is constant, for constant surface heat flux, (T, - T,;) is constant, i.e. the surface temperature also
increases linearly in the flow direction. This situation is shown graphically in Fig. 9.21:

Now, we are interested to get the temperature profile and the heat transfer coefficient during flow. This is
obtained by making an energy balance on a cylindrical fluid element shown in Fig. 9.22. Here, the surface heat
flux along the length is constant, i.e.

di =
dx

Heat flows to be considered are: conduction in and out of the element at the ends and the heat convected in

and out by virtue of flow.

T A
Entry region , Fully developed region
DAY /
TS
TB
e T
T=g/Jlh
/ A qs',
P x
0 L p2rrduC, T

FIGURE 9.21 Tube surface and meon fluid tem- FIGURE 9.22 Control element for energy balance
peratures for a pipe with constant surface heat flux in pipe flow

So, writing an energy balance:
Heat flow into the element by conduction =

dT
aQ, =-k2-mwrdx-—
Q I
Heat flow out of the element by conduction =

T d°T
aQ, .4 =-k2-x{r + dr)-dx‘(a + ErT.dr]

Net heat convected out of the element is:
ar
dQcony = 2-grdr-pCpu E; dx

By energy balance:
Net energy convected out = net energy conducted in
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ie. dQConv = er - er +dr
Substituting for the above terms and simplifying neglecting higher order differentials,

; 1 d , dT 1 dT
we get: — | P | = ——
8 wr dr\ dr e dx
As already discussed, with constant heat flux at the wall, average fluid temperature must increase linearly
with x, so that d4T/dx = constant i.e. temperature profiles will be similar at different locations along the length.
To solve Eq. 9.136, we have to insert the expression for the velocity profile given by Eq. 9.125, with the

boundary cenditions:

(9.136)

% =0 atr=0
and k[g) = ¢, = constant
dr r=R

So, Eq. 9.136 becomes:

d[ dT) 14T r2]
r = _._.umax. 1__ -r

ar’ dr a dx R
Integrating,
d_T = l..{i‘?:. . LZ - r4 +C
dr @ dx ™ 4.R? !
Integrating again,
14T r? r
T=——- | == Cyln C
2 dx Hmax 2 16-R2] +Cyn(n) + G

Applying the first B.C., we get: C; = 0. Also, T =T, at r = 0, at centre of the pipe, i.e. C; = T
Therefore, temperature distribution in terms of temperature at the centre of the pipe is:

1dT upe RE[(r P 1(r}
T-T =20 Hmax™® (07 2 f7 49.137
¢ @ odx 4 [(R] 4 (RJ ©137)
Bulk temperature:

For convection heat transfer in a pipe, we have:

local heat flux, g=h(T,-Ty) ..{9.138)
where T, is the wall temperature, and T, the ‘bulk temperature’, which is an energy averaged temperature across
the pipe, calculated from:

R
jp-Z-;r-r-u-Cp-Tdr
Ty = =5 ..(9.139)
Ip-Z-x-r-u-Cp-dr
0

Again, we have already shown that bulk temperature is a linear function of x for constant heat flux at the
wall. Performing the calculation in Eq. 9.139, {(using Eq. 9.137), we get:

7 Umax-R> dT
T, =T 4 —. 2max' -(9.140
U 9% g dx (3.140)
And, wall (or, surface) temperature is given by:
.R? ‘
T.=T. + 3 Mmax R” AT .{from eqn. 9.137, with r = R)...(9.141)
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Now, the heat transfer coefficient is given by:

Q:bA{n_ngbA(ng

dr J,-r
&)
. "Jr=R
ile. h= ————— (9142
L-T, (9.142)
Now, the numerator in Eq. 9.142 is the temperature gradient and is given by:
T 3 :
(__] o Mma AT 7T . _ Mmax R AT .(9.143)
dr J,_g e drt2 4.R e 4. dx
Substituting Eqs. 9.140, 9.141 and 9.143 in 9.142, we get
24 k 48 &k
he =2 o 20 .{9.144
11 R 11D G140
Or, in terms of Nusselts number:
h-D ;
Nup = = = 4.364 -(9.145)

Note the interesting result that for, steady, fully developed laminar flow in a pipe whose walls are subjected
to a constant heat flux, the Nusselts number is a constant = 4.364. Of course, at the entrance region, value of
Nusselts number will be somewhat higher.

(b) Constant surface temperature, T:

Let a fluid enter a pipe whose surface is maintained at a constant temperature T,, with a mean inlet temperature
of T, and let the mean exit temperature of fluid be T,. Then, the mean temperature of the fluid T,, approaches the
surface temperature asymptotically, as shown in Fig. 9.23.

Now, the temperature of the surface is constant and the fluid temperature varies continuously from T; at the
inlet to T, at the exit. To determine the heat transfer rate, we have the Newton's rate equation, Q = hA AT, where
AT, is a mean temperature difference between the surface and the fluid. In the chapter on heat exchangers, it will
be shown that this mean temperature difference, also known as ‘log mean temperature difference (LMTDY)’, is
grven as:

Arm=LMTD_£££133 ..(9.146)
n[ AT
AT;
where, AT, and AT, are the temperature differences at the inlet and outlet, as shown
AT, ~h-A
Also, —£ = e ..{9.14
50 AT exp( mC, J (9.147)

Here, m is the mass flow rate (kg/s), A is the area of heat transfer and C, is the specific heat of the fluid.
From Eq. 9.147, one can calculate the mean fluid temperature at the exit. The term 1A/ (m.C;) is known as
‘Number of Transfer Units (NTUY and is a measure of the size of the heat exchanger.
: AT,
ie. —< = exp(-NTU ..{9.148
AT, xp(-NTU) (9.148)
By making an analysis similar to the one as we did in the case of constant heat flux at the walls, we can show
that for the case of constant wall temperature, for steady, laminar flow, the Nusselts number is a constant, given
by:
h-D
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T A Nud

T, =constant
AT, Uniform heat flux

AT; Constant wall temperature
4364
3.656

T
»
0 n » X , {(xID){Re.Pr)

FIGURE 9.23 Variation of mean fluid temperature FIGURE 9.24 Variation of Nusselts number
for a pipe with constant surfoce temperature with {x/D)/(Re.Pr), for laminar flow in a pipe

Again, note that this is for fully developed flow and in the entrance region the values will be higher.

Nature of variation of Nusselts number with the dimensionless number (x/D}/(Re.Pr} is shown in the fol-
lowing graph (Fig. 9.24).

Note that for fully developed flows, Nusselts number approaches the asymptotic values of 4.364 and 3.656
for the cases of uniform heat flux and constant wall temperature, respectively.

For short pipes (L/D is small, < 60), with constant wall temperature, fully developed velocity profile (para-
bolic}, average Nusselt number is given by Hausen as:

0‘0668(%} Re-Pr

Nu,,, =3.660 + «.Pr > 0.7..(9.150a}

2

1+ 0.04-[(%]-&3-%]5

This equation gives the average Nusselt number over the length of tube, including the entry region. Here, Re
= (Du,,.p)/ . Also, in the above expression, the dimensionless group in the denominator is known as Graetz
number, ie.

Gz = Re-P."-2
L
For oils, or other fluids in which viscosity varies with temperature considerably, the constant 0.0668 in equa-
tion 9.150a must be multiplied by (u/u,)"™.
Another correlation for the above conditions is:

0.333

Re-P
Nit g = 167 | ——

D
In Eq. 9.150, property values are taken at mean bulk temperature. If the outlet temperature is not specified,
iterative working will be required.
Another correlation to take care of the property variations is suggested by Sieder and Tate:

{for(L/D)/(Re.Pr) < 0.01, constant wall temperature...(9.150b))

3 0.14
Nit,, = 1.86- Re-Pr [ﬁ) ..(9.150¢)

L
D
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For short pipes (L/D is small, < 60), with constant wall temperature, velocity profile still developing, aver-
age Nusselt number is given by Hausen as: :

0.104-[%).1&-&

.8
veoows|(2) e

For oils, or other fluids in which viscosity varies with temperature considerably, the constant 0.104 in Eq.
9.150d must be multiplied by {2/ ,)"™. '

For long lengths, at constant wall temperature, Nusselt number asymptotically approaches the value 3.66.

For short pipes with constant wall heat flux, with fully developed parabolic velocity profile, Hausen’s corre-
lation for local Nusselt number is:

Nu,,, = 3.66 + (Pr = 0.7..{9.150d))

avg =

0.023-[1—2—)~R8-Pr
Nu = 4.36 + - : (Pr > 0.7...(9.151a))
1+ 0.0012'[(%}1{8'})?]
Another relation recommended for above conditions is:
' 0.33
Nitg,g = 1.30- ReiPr {for (L/D)/(Re.Pr) < 0.01, constant wall heat flux...(9.151b))
D

For short pipes with constant wall heat fiux, with developing velocity profile, Hausen'’s correlation for local
Nusselt number is:

0.036-[%)-&3-%

1+ 0.0011-[(%]-Re-Pr:|

For long pipes with constant wall heat flux, average Nusselt number approaches the value 4.364, as already
discussed.

9.10.4 Fully Develéped Laminar Flow Inside Pipes of Non-circular Cross-sections

Nusselts number and friction factor for fully developed laminar flow inside pipes of non-circular cross-sections
are given in Table 9.9. Here, Reynolds number and Nusselts number are based on the hydraulic diametet, which
was defined earlier, as:

Nu = 436 + (Pr = 0.7...(9.151c))

4-A
P
where A is the area of cross-section and P is the wetted perimeter.

Flow through an annulus: Practically important case is the flow through an annulus with the outer surface
insulated, and the inside surface maintained at either a constant temperature or constant heat flux.

In the case of an annulus, the hydraulic diameter as given by Eq. 9.132 viz.

D, = (D, — D). For fully developed laminar flow, Nusselt number varies with (D;/D,) as shown in Table 9.10.
Here, N is the Nusselt number with the inner wall maintained at constant temperature and Nuy is the Nusselt
number with the inner surface maintained at constant heat flux. Outside surface is insulated for both the cases.

In laminar flow, surface roughness of the pipe does not have much effect on Nusselts rumber or friction
factor.

D, = .(9.132)
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TABLE 9.9 Nusselts number and friction factor for fully developed Laminor flow in pipes of various cross-

sections

“Grose-secton of pipe. | T Frction tactor, ¢
Circle (dia. = D) 64/Re
Hexagon 60.20/Re
Square . X 56.92/Re
Rectangle of alb=1 2.98 3.61 56.92/Re
width ‘2 and 2 3.39 412 62.20/Re
height ‘D’ 3 3.96 4.79 68.36/Re
4 4.44 5.33 72.92/Re
6 5.14 6.05 78.80/Re
8 5.60 6.49 82.32/Re
o 7.54 8.24 96.00/Re
Ellipse, of major ab=1 3.66 4.36 64.00/Re
axis ‘a and 2 3.74 4.56 67.28/Re
minor axis ‘&’ 4 3.7¢ 4.88 72.96/Re
8 3.72 5.09 76.60/Re
16 3.65 5.18 78.16/Re
Triangle, with g=10 1.61 245 50.80/Re
apex angle &= {deg.) 30 2.26 2.9 52.28/Ae
60 2.47 3.1 53.32/Ae
80 2.34 2.98 52.60/Re
120 2.00 2.68 50.96/Re

TABLE 8.10 Nusselt numbers for fully developed laminar flow in an annulus, insulated on the outsid

i G gt

Nur 174 5.74
Nuy, 17.81 6.58

9.10.5 Turbulent Flow Inside Fipes
9.10.5.1 Velodty profile and pressure drop.  Experimental results of Nikuradse for turbulent flow in smooth pipes
indicated a power-law form for velocity profile:

1

u__ (1]5
umax R

where u is the local time-average velocity, u,, is the time-average velocity at the centre, K is the radius of the
pipe and y = (R - r), is the distance from the pipe wall. Values of index n are given in Table 9.11 for different
values of Reynolds numbers:

Pressure drop for turbulent flow in pipes is also given by the Darcy ~ Weisbach equation i.e.

.{(9.152)

Ap p-u,z,,
EA {912
D (9-128)

TABLE 9.11 Values of index ‘n’ in Eq. 9.152 for turbulent flow in pipes

4 x 10°
2.3 x 10*
1.1 x 10°
1.1 % 10°

2 x 10°
3.2x 108

10.0
10.0

FUNDAMENTALS OF HEAT AND MASS TRANSFER



However, friction factor f must be determined experimentally. (Note that in case of laminar flow equation
for friction factor was derived analytically as f = 64/Re). :

Average or mean velocity, u,, over the cross-section is easily calculated for the power-law profile as:

R 1
I (R=1)" gk o -2-7rdr
_J0

R
IZ-n’-rdr
0

Performing the integration we get the result as:

Hoy

2-n?
u m = ————u——
2n+D-{n+1)
Friction factor ‘f for smooth pipes is given by the following empirica! relations:

{average or mean velocity..(9.153))

f=0316-Re"? _ (for 2 x 10" < Re < 8 x 10%..(9.154))
f=10184-Re™? (for 10* < Re < 10°...(9.155))
f = (0.79-In(Re} - 1.64)"? {for 3000 < Re < 5 < 10°...(9.156))

Eq. 9.156 for friction factor, developed by Petukhov, covers a wide range of Reynolds numbers.

Friction factor ‘f for commercial or ‘rough’ pipes is given by Colebrook’s formula (1939) or from the
Moody’s diagram. Here, surface imperfections on the internal surface extend beyond the laminar sub-layer and
are characterized by a ‘roughness height’ ‘¢’ and the ‘relative roughness’ (¢/D) is a parameter in the Moody’s
diagram. See Fig. 9.25. Note that in the region of complete turbulence, friction factor is mainly dependent on the
relative roughness. Values of ‘¢’ for commercial piping are given in Table 9.12.

Colebrook formula:

1 17a 210l (E)+ 287 a
F =174-21 g[(R]+ Re-‘/f] -(9.156a)

Here, logarithm is to base 10. This equation is slightly difficult to calculate since f occurs on both sides of the
equation and an iterative solution will be required. Instead, following formula for f is relatively easier to calcu-
late:

f= L35 .{9.156b)

2
ml €|+ 5.7[']:%;
37D Re
Losses in pipe fittings:

Fittings, valves, etc. are part of the piping system and they also offer resistance to flow of fluid. Losses through
fittings can be quite considerable in large, industrial piping systems. Generally, head loss through a valve or
fitting is expressed in the following form:

u2
hy = k- Tm (9.157)

Values of ‘loss coefficient’, k; for some common valves and fittings are given in Table 9.13.

In practice, while calculating pressure drop in a piping system, for each valve and fitting, an ‘equivalent
length L, ‘is found out and added to the straight length of piping and then the Darcy — Weisbach equation is
applied. Equivalent length for a valve or fitting is calculated from:

Ly= kD ..{9.158)
f
9.1052 Heat trunsfer coefficent for turbelent flow inside pipes. Analytical treatment of turbulent flow is rather
complicated as compared to that of laminar flow; therefore, empirical relations based on extensive experimental
data have been suggested. Reynold's analogy between momentum and heat transfer supplies the simplest corre-
lation:
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FIGURE 6.25 Moody’s diagram for friction factor for flow through pipes
TABLE 9.12 Roughness height ‘& for commercial piping
Drawn tubing 0.0015
Brass, lead, glass, spun cement 0.0075
Commercial steel or wrought iron 0.05
Cast iron (asphalt dipped) 0.12
Galvanized iron 0.15
Wood stave 021t 1.0
Cast iron (uncoated) 0.25
Concrete 031t 3.0
Riveted steel 11010

Reynold’s analogy between momentum and heat transfer for turbulent flow in a pipe:
In laminar fiow, we have the expression for shear stress and heat transfer as follows:

L. 3ﬂ (in laminar flow)
P Y
._qc_ = a Z_T (in laminar flow)
2 p Y
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TABLE 8.13 Lloss coefficient (k) for some common valves and fitfings

Angle valve, fully open 3.110 5.0
Ball check vaive, fully open 4510 7.0
Gate valve, fully open - .19
Gilobe valve, fully open 10
Swing check valve, fully open 231035
Regular radius etbow, screwed 0.9
Regular radius elbow, flanged 0.3
Long radius elbow, screwed 0.6
Long radius elbow, flanged 0.23
Close return bend, screwed 2.2
Flanged returm bend, two elbows, regular radius 0.38
---do---, long radius 0.25
Standard Tee, screwed, flow through run 0.6
---gdo---flow through side 1.8

Here vand a represent momentum and thermal diffusivity, respectively. It is a molecular phenomenon i.e.
in laminar flow, momentum is transported between layers of fluid at a molecular level. However, in turbulent
flow, there is an additional factor of ‘eddy transport’ i.e. chunks of fluid, called, ‘eddies’ also physically move
between layers and contribute to the transport of momentum and heat. This is represented for momenturm and
heat transfer, respectively, as follows:

z_ (v+ EM)-Z—ht (in turbulent flow..{9.159})
Y
q dT .
—_— = -— turbulent ..{9.160
p-Cp (@ + &y) ay (in turbulent flow..{ ))

Now, let us assume that momentum and heat are transported at the same rate i.e. £ = &, and that the
Prandtl number, Pr = 1. Then, dividing Eq. 3.160 by 9.159, we get:

1 gy -dr (9.161)
Gt :
Now, integrate Eq. 9.161 from the surface to the mean bulk conditions, i.e. from T=T,u=0t0 T =T, and

u = u,, assuming that /7 is a constant at the surface = g,/7;

q. - Tb
s -Ildu - J.AldT
Cpts J0 T,

ie. %—“—’” =T,-T, ' (9.162)
pTs

Now, heat flux at the wall can be written as:
g9, =h(T,-Ty) ...(9.163)
And, the shear stress at the wall = (shear force)/surface area

fs - = —_—
7-D-L 4
. L up,
where, the pressure drop = AP = f. o 2 -
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So, we get:

Z, = %- i _ : {9.164)
Substituting Eqs. 9.163 and 9.164 in Eq. 9.162, we get:
Sttt Nwp _f ..(9.165)

- pCyuty, ReygPr 8
Eq. 9.165 is called ‘Reynold’s analogy’ for fluid flow in a pipe and is valid for both laminar and turbulent
flows. Note the restriction that Pr = 1, in Reynold’s analogy i.e. it holds good for most of the gases.

For fluids with Prandtl number much different from unity, we have the ‘Colburn analogy’ expressed as
follows:

wira

St-Pri3 = é ..{9.166)
All fluid properties in Eq. 9.166 are evaluated at (T, + T,)/2, except C, in Stanton number, which is evaluated
at the bulk temperature of the fluid.
Note that by analogy between momentum and heat transfer, we get a relation between heat transfer coeffi-
cient (k) and friction coefficient (f), and by knowing any one of them, the other quantity can be calculated.
There are two more analogies, more refined than the ones already mentioned. We shall just state them:
Prandt] analogy:

f
St=— 2 (Prandt] analogy...(9.167))

1+5.E.(Pr-1)

Prandtl analogy reduces to Reynold’s analogy when Pr = 1.
Von Karman analogy:

(i}-Re-Pr
Nu = 2 (Von Karman analogy...(9.168))

f 5
1+ S-J;A[(Pr -1} + ln[l + g-(Pr - 1)]]

Substituting the f relation from Eq. 9.155 in the Colburn analogy, i.e. 9.166, we get the following relation for
Nusselt number for fully developed turbulent flow in smooth tubes:
1
Nu = 0.023-Re®®- Pr3 (for 0.7 < Pr < 160, Re > 10,000...(9.169))

This is known as ‘Colburn equation’.
9.10.5.3 Design oquations. However, more popularly used design equation for fully developed (L/D > 60), tur-
bulent flow in pipes is the ‘Dittus-Boelter equation’. (1930), given below:

Nu = 0.023.Re®®.pr" {for 0.7 < Pr < 160, Re > 10,000...(9.170))
where n = 0.4 for heating and n = 0.3 for cooling of the fluid flowing through the pipe. Here, fluid properties are
evaluated at the bulk mean temperature of fluid ie. at T, = (T; + T,}/2 , where T, is the temperature of fluid at
pipe inlet and T, is the temperature of fluid at pipe outlet.

If the temperature difference, (T, — T}) is significant, then variations in physical properties have to be taken
into account, and in such situations correlation of Sieder and Tate (1936) is recommended:

1 0.14
Nu = 0.027-Re®S. Pr 3.(ﬁ) (for 0.7 < Pr < 10,000, 6000 < Re < 107..(9.171))

s

A more recent relation (1970) which fits experimental results better is the following:
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[i}-Re-Pr n
Nu = 8 - {ﬁa] ~(9.171a)
1.07+12.7-[f§] Pr%%7 _ 1) Hs

where n = 0.11 for heating of fluids, rn = 0.25 for cooling of fluids, n = 0 for constant heat flux and #o is to be
5

replaced by L for gases, temperature in Kelvin
1)

Above equations can be used for the cases of heat transfer with constant wall temperature as well as uniform
heat flux at the wall surface.

Also, relations for turbulent flow in circular pipes can be used for non-circular tubes as well, by replacing
pipe diameter D in evaluating Reynolds number by the hydraulic diameter, [}, = 4 A/P.

Correlation for thermal entry region:

For the range of L/D from 10 to 400, Nusselt recommended the following relation for turbulent flow in
pipes:

1 0.055
Nu = 0.036-Re®®. pr3 (-L—] {for 10 < {L/D) < 400...(9.172))

Here, fluid properties are evaluated at mean bulk temperature.
91054 Yorbulont flow in a long, smooth samwles.  For Nusselt number, the correlations for circular pipes are used,
with the hydraulic diameter taken as Dy, = D, - D;.
For friction factor, following relation is proposed:
Furatas = 0.085-(Re)™*% (Re based on hydraulic diameter...(9.173))
0.1055 Corrolstions for Eguid metuls. For fully developed turbulent flow of liquid metals in smooth circular tubes
[(L/D) > 30], with constant surface heat fiux, Skupinski et.al. recommend the following correlation:
Nu = 4.82 + 0.0185.Pe"* (3600 < Re < 9.05 x 10°, 100 < Pe < 10,000...(9.174))
Note that Pe = Re.Pr
More recent (1972) correlation, which fits the available data well for flow of liquid metals in pipes with
constant heat flux, is due to Notter and Sleicher:
Nu = 6.3 + (0.0167-Re"®. pr?%) ..{9.175)
Similarly, for constant surface temperature conditions, for flow of liquid metals, Seban and Shimazaki
recommend the following correlation for Pe > 100, and [(L/D) = 30],
Nu =50 + 0.025 Pe®® (for T, = constant Pe > 100...(9.176))
9.105.6 Helicolly coiled twbes. Coiled tubes are used to enhance the heat transfer coefficient and also to accom-
modate a larger heat exchange surface in a given volume. Heat transfer in a coiled tube is more compared to that
in a straight tube due to the contribution of secondary vortices formed as a result of centrifugal forces.
Here, we define a new dimensionless number, called ‘Dean number, Dn’ as follows:
1
D, = ReA(I—D-JZ (9.177)
d. ;
where D is the diameter of the tube and 4, is the diameter of the coil.
For laminar flow, following equations are recommended, depending upon the Dean number:
(a) When Dn < 20:
1

Nu,,, = 1.7-(Dnz-1='r)g (Dn < 20, Dn®-Pr > 10,000...(9.178))

uavg
(b) When 20 < Dn < 100:
: : , 1
Nityg = 09-(Re" Pr)6 (20 < D < 100,...(9.179))
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(c) When Dn > 100:

e

All the above three Egs. viz. 9.178, 9.179 and 9.180 are valid for 10 < Pr < 600.

Also, for coiled tubes, there is not much difference in values of average Nusselt numbers whether the sur-
face temperature is kept constant or the surface heat flux is maintained constant.

In laminar flow, friction factor for a coiled tube is obtained from:

l D 0.07 .
Nug,, = 0.7-Re“‘43-Pr6-(—J (100 < Dn < 830,...(9.180})

64 21.5-Dn
wd = | Re ) {156+ Tog (D)) 2 2000 > Dn > 13.5..(9.181
Jrotea (REJ {1.56 + log (D)) ( >Dn> { N

Here, logarithm is to base 10.
Critical Reynolds number at which flow becomes turbulent in a coiled pipe is given as:

0.32
ke, = 2-(2J 10t (for 15 < (D/d.) < 860...(9.182))

(a9
For values of (D/d,) > 860, critical Reynolds number for a curved pipe is the same as that for a straight pipe.
For turbulent flow in forced convection in helically coiled tubes, Hausen has proposed the following corre-

lation:

N

Ua helical =1 +[ 20114},[.9_] ..(9.183)
Ni Ya_straight Re™ d;

Here, LHS is the ratio of average Nusselt numbers for helical and straight tubes, D is the diameter of the
tube and 4, is the diameter of the coil.
Exvanple 9.17.  Water is heated in the annular section of a double pipe heat exchanger by electrical heating of the inner
pipe. Outer pipe is insulated. Mean bulk temperature of water is 60°C. For the annulus, I; = 25 amand D, = 5 em.
Determine the convection coefficient and pressure drop/metre length for;
(i) flow rate of 0.04 kg/s, and
(ii) flow rate of 0.5 kg/s
Solution.
Data:
Ta = 60°C Di:=0025m Do := 0.05 m L=1m mty == 0.04 kg /s (Case (i)) m, = 0.5 kg/s
First, we need the properties of water at average temperature of 60°C:
pi=9833kg/m® = 0467 x 107 kg/(ms) C,:=4185J/(kgC)  k:= 0654 W/(mC)  Pr :=299
Case (i): Flow rate is 0.04 kg/s:
Since there is electrical heating of the inside tube, it is a case of constant heat flux at the wall; and, the outside surface is
insulated.
Reynolds number:
To caiculate Re, we need hydraulic diameter, since this is annular duct:

A

We have, for hydraulic diameter: Dy, = 47‘
ie. Dy:=D, - D,
ie Dy, =0.025m (hydraulic diameter)

m
Velocity of flow: U= ——L ——m/s
ty . P
p 4

ie. U, = 0028 m/s

Therefore, Re: = Deplh

i

Le. Re = 1.454 x 10° < 2300 {laminar flow)
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Heat transfer coefficient:

Therefore, this is the case of laminar flow in an annular duct, insulated from outside and subjected to constant heat
flux at the inner wall. We assume fully developed flow.
Then, from Table 9.10 we get:

Nuy, = 6.58 (for D,/D, = 0.5)
ie. hkﬂ = 6.58
ie. h:= 6';8,""( W/ (m’C) (heat transfer coefficient)
ie. = 172.133 Wim™C) {heat transfer coefficient.)

Pressure drop:
Friction factor for fully developed laminar flow in an annulus, is read from Table 9.7.

We get: f-Re = 95.15 (for ratio of radii = 0.5}
95.
Therefore, f= % ie. f=0065 (friction factor)
Therefore, pressure drop is given by:
' Lyl
Ap _ f o ..(9.128)
L D 2
. L poul
e, Ap = — f e Pa
p=o5f75 (Pa)
ie. Ap = 0.982 (Palmetre length...pressure drop.)
Case (ii): Flow rate is 0.5 kg/s:
Reynolds number:
m
Velocity of flow: Uyi= ~———2———=m/s
v © |=@i-ph
4
ie. U, = 0345 m/s
Therefore, Re = DLLEIA
ie. Re = 1.818 x 10* > 2300 (turbulent flow)

Heat transfer coefficient:

Therefore, this is the case of turbulent flow in an annular duct, insulated from outside and subjected to constant
heat flux at the inner wall. We assume fully developed flow. And the Dittus-Boelter correlation can be used with the
hydraulic diameter substituted for tube diameter L.

Nu = 0.023-Re®5. Pr" (for 0.7 < Pr < 160, Re > 10,000...(9.170))
Here, n = 0.4, since the fluid is being heated.
ie. Nu := 0.023-Re"®-pr4
ie. ' Nu = 91.117 {Nusselt number)
Nu-k N ,
Therefore, Boi= 2 W/(mEC) (heat transfer coefficient)
(]
i.e. h = 2.384 x 10 WHmM™C) (heat transfer coefficient)

Pressure drop:
Friction factor for fully developed turb. flow in an annulus, can be read from Moody’s diagram, or we can use Eq.
9.154:

ie. fi= 0.316-Re”"® (for 2 x 10* < Re < 8 x 10%.{9.154))
We get: f=0.027 {friction factor)
Therefore, pressure drop is given by:

z
Ap _ [ pa (9.128)
L D 2
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- o Lol
ie. Ap: = D, f 5
i.e. Ap = 63.814 (Palmetre length...pressure drop.)
Exomple 9.18. Water at 20°C flows through a 2.5 cm ID, 1 m long pipe, whose surface is maintained at a constant
temperature of 50°C, at velocity of 3 cm/s. Determine the outlet temperature of water, assuming fully developed hydro-
dynamic boundary layer.
Solution.
Data:

T, = 2°C Ts:=50°C D:=0025m L:=1m U:=0.05m/s

We need the properties of water at mean bulk temperature. But, as yet, we do not know the exit temperature of
water. 50, let us assume the mean bulk temperature as 30°C and proceed with the calculations; later, we will check this
assumption and refine our calculations, if required.

Properties of water at T, = 30°C:

p=9960kg/m® 4 :=0798 x 10 kg/(ms)  C,:= 4178 J/(kgQ)  k:= 0.615 W/(mC)  Pr = 542

Reynolds number:

(Pa)

D-u.
Re := L
H
ie. Re = 1.56 x 10° (< 2300...therefore, laminar flow)
:Now, % =40 and 04 -Re = 62406
Therefore, flow is in the entrance region
L
=D _ _ 473107 <0m
Re-Pr
Therefore, we use Eq. 9.150b, viz
0.333
Re-Pr
Nty = 167 T (for (L/D)/(Re.Pr) < 0.01, constant wall temperature...3.150b)
D
ie Nu,,, = 9.931 (average Nusselt number)
Nu,,, -k
Therefore, Bom =R
D
ie. h = 244293 W/(m’C) (heat transfer coefficient)

Now, determine the outlet temperature by an energy balance:
2
ie. %'p'u'cp'(To_Ti) =J'!'-D-L-h~[Ts—T’;T°J

In the above equation we have assumed that the mean ternperature difference between the water stream and the
surface is the difference between the surface temperature and the arithmetic mean of water temperature at inlet and exit.
Strictly speaking, we should consider the LMTD; however, the assumption of arithmetic mean is good enough and the
error is not much.

Let us solve this easily by Mathcad. Assume a guess value for T, to start with, and then write the constraint after
typing ‘Given’. Then the command ‘Find (T}’ gives the value of T, immediately:

T,:= 100 (guess value of T )

Given

z-D
4

: T, +T,
pUC,o(T,-T) = x-D-L-h.(T, _T)

Find (T,) = 25.152
ie T, = 25152°C (exit water temperature)
Therefore, mean temperature of water is: {20 + 25.152)/2 = 22 5°C, whereas we had assumed a mean value of 30°C.
Taking the properties of water at 22.5°C, calculations can now be repeated:
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Properties of water at T, = 22.5°C:
p =9975kg/m®  u:=095x107° kg/(ms) ;= 4181)/(kgC) k= 0602 W/(mC)  Pri= 6.575

Therefore,
Re = Dlp
H
ie, Re = 1.313 x 10° (< 2300...therefore, laminar flow)
L
ﬁ = 4635 x 107 < 0.01
Therefore, we use Eqg. 9.150b i.e.
0.333
Re-Pr
Nityy, 1= 1.67- T {for (L/DY/(Re.Pr) < 0.01, constant wail temperature....9.150b)
D
ie. Ny, = 9.998 (average Nusselt mumber)
Nu,, -k
Therefore, Bo= —5
D
ie. = 240,754 W/{(n*C) (Reat transfer coefficient)
Now, determine the outlet temperature by an energy balance, and using Solve block of Mathcad:
T, := 100 (guess value of T )
Given
x-D?

pUCHT,-T) = :r-D-L'h-(TS ﬁE_;i)

4
Find (To) = 25.073
ie T, = 25.073°C (exit water temperature.)
Therefore, T, = (20 + 25.073)/2 = 22.573°C, which is very close to T, = 22.5°C at which properties of water were
taken. So, T, = 25.073°C ...(Ans).
Exemple 9.19.  Air at 1 bar and 20°C flows through a 6 mm ID, 1 m long smooth pipe, whose surface is maintained at a
constant heat flux, with velocity of 3 m/s. Determine the heat transfer coefficient if the exit bulk temperature of air is
80°C. Also determine the exit wall temperature and the value of / at the exit.
Solution.
Data:
T; 1= 20°C T, := 80°C D:=0006m L:>=1m U:=30m/s
Therefore, mean bulk temperature is (20 + 80)/2 = 50°C
ie. T, = 50°C (mean bulk temperature of air)
Properties of air at Ty, = 50°C:
pi= 1093 kg/m® = 1961 x 10 kg/(ms)  C,:= 1005 ]/(kgC) k= 0.02826 W/(mC)  Pr:= 0698
Reynolds number:

ie Re = 1.003 x 10° (< 2300...therefore, laminar flow)
Since the tuube length is short, entrance effect must be considered.

We have: % = 166.667

b

and,

= 0.238 > 0.01

&

-Pr
Nusselt number:

Therefore, we shall use following equation assuming developing velocity profile:
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ie.

ie.
and,
ie.

ie.

ie.

0.036-(%)-123-13?‘

1+ 0.0011-[(%)- Re-Pr]

Nu =436+

(Pr = 0.7.:(9.151c))

Nu = 4.511 (Nusselt number)
Heat transfer coefficient:
-k
Therefore, b= N—;-—— W/ (m?C) {heat transfer coefficient)
h = 21.245 W/{m*C) {heat transfer coefficient)

Exit wall temperature:
Since the wall heat flux is constant, we have the relation for h:

qw

h=—"— (a)
(T -Ty)
Also,
2
Mass flow rate: n = p- {ﬁf J'U
m=927x 1077 kg/s
Q= m-Cp-(Ta -T) W (total heat transfer rate)
Q=581 W ’ (total heat transfer rate)
But, Q=g,x2DL {where g, is the constant surface heat flux)
Therefore, gy = Q W/m® (surface heat flix)
m DL
G = 296.586 W/m? (surface heat flux)
Therefore, from Eq. a:
Ty exit 1= Tp + quoC (surface temperature af exit)
T e = 93.96°C (surface temperature at exit.)

Exomple 9.20. Water (under pressure) is heated in an economiser from a temperature of 30°C to 150°C. Tube wall is
maintained at a constant temperature of 350°C. If the water flows at a velocity of 1.5 m/s and the tube diameter is 50

mm,

determine the length of tube required.

Solution.
Data:

ie

ie.

T; = 30°C T, = 150°C T, = 350°C D :=005m U:=15m/s
Therefore, mean bulk temperature is (30 + 15012 = 90°C
T, := 90°C ...tmean bulk temperature of water
Properties of water at T, = 90°C:
p=9653 kg/m®> = 0315 x 107 kg/(m/s) C,:=4206 J/(kgC} k= 0.675 W/(mC)

Pr:=196
Reynolds number:
.
Re = Dip
H
Re = 2,298 x 10° (> 2300...therefore, turbulent flow)

Heat transfer coefficient
Using more recent correlation,

Nu =

o . (9.171a)
f 0.67
1.07+12.7-[§J (P 1)
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where n = 0.11 for heating of fluids, n = 0.25 for cooling of fluids, #n = 0 for constant heat flux and £ stobe replaced

5

by % for gases, temperature in Kelvin
b

We have:
f:= (0.79-In(Re) - 1.64)72 (9.156)
ie. f=10015
and, dynamic viscosity of water at wall temperature of 350°C is:
4, = 0.065 x 107 kg/(m/s)

Therefore,
(%}Re-Pr 0.1
Then, Nu = o5 (ﬁJ
1.07+12.7-(£} (P 1) -

ie. Nu = 734.689

Therefore, - h= Nu-k

D

ie. I = 9918 x 10° W/(m?%Q) (heat transfer coefficient)

Length of tube required:

Water temperature varies continuously from 30°C at inlet to 150°C at exit, tube surface temperature remainin con-
stant at 350°C. So, mean temperature difference in Newton’s equation is LMTD, to be very accurate.

(L-T)-(T,-T.)
o] @-T)
(Ts - Ta)
ie. ILMTD = 255.317°C (log mean temperature difference)
Applying energy balance:

LMTD :=

aD?
2 {TJ.U.CP.(TO -T) = h-{zD-L)-LMTD

Therefore,
=D?
P(TJUCP {5, -T)
L .
h-(z-D)-LMTD
ie. L = 3.607 m (length of tube required.)

Note: We could have taken the mean temperature difference as the difference between surface temperature and the
arithmetic mean between inlet and exit of water i.e. AT = 350 -~ 90 = 260 whereas LMTD was 255.7°C. Then, L would
have been 3.542 m, not much different from 3.6 m; however, using LMTD is accurate method.

Alternatively, if we had used Dittus-Boelter equation, viz.

. Ny := 0.023-Re®8. pr4 (Pr™* since fluid is being heated)...(9.170)
ie. Nu = 585.815
Nu-k
d h=
ary 3]
ie. b= 7909 x 10° W/(m*C) ..heat transfer coefficient.

And, using LMTD we would have got L = 4524 m
Example 9.21.  Sodium potassium alloy (25:75), flowing at a rate of 3 kg/s, is heated in a tube of 5 em ID from 200°C to
400°C. Tube surface is maintained at constant heat flux and the temperature difference between the tube surface and the
mean bulk temperature of fluid is 40°C. Determine the heat transfer coefficient, heat flux at the surface and length of
tube required.
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Solution.

;= 200°C , = 400°C AT := 40°C D := 005 m m = 3.0kg/s
Therefore mean bulk temperature is (200 + 400)/2 = 300°C
ie T, = 300°C ...mean bulk temperature of Na-K alloy
Properties of Na-K alloy at T, = 300°C:
p=79kg/m®  v=0366x10"°m?s (,:=10383]/(kgC) k:=2268 W/(mC) Pr:=00134
Reynolds number:

m
= —— kg/(sm? mass velocit
i B (sm?} ( y)
4
ie. G = 1.528 x 10° kg/(sm?) {mass velocity)
GD
Re = =— Reynold; b
vp (Reynolds number)
ie. Re = 2.612 x 10° (> 2300...therefore, turbulent flow)

Heat transfer coefficient
Using the recent correlation of Notter and Sleicher, fo constant heat flux conditions

Nut = 6.3 + {0.0167-Re5. pr0%) (9.175)

ie. Nu = 18473 {Nusselt number)
Therefore, R NUK Gy {m2C) {heat transfer coefficient)

ie. h = 8379 x 10° W/(m’C) .heat transfer coefficient

Heat flux at surface:
Now, heat flux is determined from its definition:

=2 (where q, is the surface heat flux and AT is the temperature
AT diffierence between surface and the bulk temperature = 40°C,
a constant for constant heat flux conditions.)

ie. g; = h-AT W/m’ (surface heat flux)
ie. g, = 3.352 x 10° W/m? (surface heat flux.)
Length of tube required:
This is obtained by a heat balance:
g (2D-L) = m-Cp(T, - T)

. m'cp ‘(Ta - T;)
1.e. [ S
g, 7=-D
ie . L=11833 m (length of tube required.)
Alternatively:
h-(2.D-L)-AT = m-C, (T, - T))
- m'Cp '(To - T;)
h-(z-D) AT
Le. L=11833 m (same as earlier.)
" Also, if we use Eq. 9.174 to determine heat transfer coefficient:
Nu = 4.82 + 0.0185 (Re. PPY*® (3600 < Re < 9.05 x 10°, 100 < Pe < 10,000...(9.174))
ie. Nu = 20.602
Nu-k 2 .
Therefore, h:= W/(m*“C} (heat transfer coefficient)
ie. , h = 9.345 x 10° W/(m*C) (heat transfer coefficient)

- Compare this value of i1 with that obtained earlier using Eq. 9.175.
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_ mCT,-T)

" h{z-D)AT
ie. L=1061m (length of tube required)
Example 9.22. 180 kg/h of air at one atm, pressure is cooled from 100°C to 20°C while passing through a 3 cm ID pipe
coil bent into a helix of 0.7 m diameter. Calculate the air side heat transfer coefficient.
Solution.
Data:

1

180

T, := 200°C T, = 20°C D :=003 m d, :=07m o= ——
3600

kg/s ie. m=005kg/s

Therefore mean bulk temperature is (100 + 20}/2 = 60°C

i.e. T, = 60°C (mean bulk temperature of air)
Properties of air at T, = 60°C:
p=106kg/m®  p:=2010x 10 kg/(ms)  C,:= 1005 ]/(KgC) k= 00289 W/(mC)  Pr:=06%
Reynolds number:

G = T kg/(sm?) (mass velocity)
r-D
=) |
ie. G = 70.736 kg/(sm?) {mass velocity}
Re = %9— (Reynolds number)
ie. Re = 1.056 x 10° > 2300...therefore, turbulent flow

Nusselt number for straight tube:
Using the Dittus-Boelter equation for turbulent flow:

: Nu = 0.023-Re®®. Py {for 0.7 < Pr < 160, Re > 10,000..{9.170))
ie Nu := 0.023.Re%3. pr0? (n = 0.3 since air is being cooled.)
ie. ' Nu = 215.457 {Nusselt number...for straight tube)

Nusselt number for helical coil:
We have:
Ni; yetical ( 2 ) D
= =1+ = .(9.183
Nun_suaigm Ren.u dt ( )
Therefore,
21 D
Ny neiicat = Nu- |:1 + [W)(ZH
ie. N, petical = 253.855
Heat transfer coefficient:
N cal K
Therefore, h= »-—u“*% W/ (m?C) (heat transfer coefficient)
ie. k= 245.054 W/(m®C) (heat transfer coefficient.)

Example 9.23. In a long annulus (3.125 cm 1D, 5 cm OD), air is heated by maintaining the temperature of outer surface of
the inner tube at 50°C. The air enters at 16°C and leaves at 32°C and its flow velocity is 30 m/s. Estimate the heat
transfer coefficient between the air and the inner tube. Use Dittus - Boelter equation, viz.

Nuj, = 0.023.(Rep)*® Pr'; Average properties of air at 24°C are:

p = 1614 kg/m®, C, = 1007 ]/ (kgC), k = 0.0263 W/(mC), Pr = 0.7 v = 159 x 107° m¥/s (M.U. 1999)
Solution.
Data:

T; == 16°C T, :=32°C T, := 50°C D, = 0.03125 m D,:=005m L:=1m U:=30m/s

'
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ie.
ie.

ie.

Reynolds number:

To calculate Re, we need hydraulic diameter, since this is annular duct:

We have, for hydraulic diameter: D, = %
D,:=D,-D;
Dy =0019m
Therefore, Re = D,-U
v
Re = 3.538 x 10*
Heat transfer coefficient;
We have:
Nu := 0.023 Re%8.py4
Nu = 86.846
Therefore, b= Nu-k
D,

h = 121.815 W/(m*C)
Also, calculate the pressure drop per metre length:
Friction factor:
We have, from Eq. 9.155:

(hydraulic diameter)

(> 2300...turbulent flow)

(Dittus—Boelter equation n = 0.4, since air is being heated)
(Nusselt number)

(heat transfer coefficient)

fi=0.184-Re ™02 {for 10* < Re < 10°...(9.155))
ie. f=0023 (friction factor)
Pressure drop:
L pl? 2
Therefore, AP = f-D—- > Pa (=N/m") (pressure drop per meter length)
3
e AP = 877.38 Pa (pressure drop per meter length.)
Exomple 9.24. Water at 20°C flows flows through a tube, 4 cm diameter 9 m length, tube surface being maintained at
90°C. Temperature of water increases from 20°C to 60°C. Find the mass flow rate. Use Dittus—Boelter equation, viz. Nu,,
= 0.023.(Rep)"® Pr’; Take properties of water at mean bulk temperature of 40°C as:
p =993 kg/m’, C, = 4170 ] /kgC), k = 0.64 W/(mC), v = 0.65 x 10" m%s (M.U., 1996)
Solution.
Data: :
T; = 20°C T, = 60°C T, :==90°C D:=00Mm L:=9m MHi=vp ie pu=6455x 10" kg/(ms}
G,
Therefore, Pr = ie. Pr=4206

ie. m-C,(T, - T) = h-A LMTD
k m-D
Co(T, - T) = | =~-0.023) ——
ie m p( o 3 l:D [Arﬂ
sl
where A= 7D

Now, from Dittus—Boelter equation we get Nusselt number, hence the heat transfer coefficient k; then writing a heat
balance:

Let m be the mass flow rate (kg/s) of water.

Heat gained by water = heat transferred between the pipe surface and the bulk of water

(L-T)-(T,-T,)

] =T
(T,-T)

LMTD :=

ie A, =1257 x 10° m?
aDLie A, = 1131 m?

FUNDAMENTALS OF HEAT AND MASS TRANSFER

[+X:]
] -Pr“-AS-LMTDJ

(area of cross-section)

(surface area of heat transfer)

] ie. LMTD = 47.209°C



Therefore,

ie.

Al

0.8 0
[E-O.OB{LJ -Pr°"‘oA§-LMTD}

[C, (T, -T)]

m = 2.373 kg/s

(mass‘ flow rate of water)

9.11 Summary of Basic Equations for Forced Convection

Flat Plate, laminar flow:
Hydrodynamic boundary _ 5x 5
layer thickness Bam = (Re, )" Ae < 5x 10
Local friction coefficient Co= —— = 6.4 Re < 5x 10°
pUE Re,
2
Local Nusselt number th = Nu, = 0.332 /Re, -Pr"™ Re <5 x 10°, Pr> 0.5

Average Fretion
coefficient

Cp= l'rc”‘ dx = 1328
o

L JAe,

Re < 5x 10°

Avearage Nusselt number

Nu, = 0.664. JRe, .Pr™%®

Re <5x 105 Pr> 05

Local Nusseit number Nu, = 0.565-Pel® ...(Pr <.005) Re < 5 x 10°
for liquid metals Pe = Re. Pr
Flat Plate, turbulent flow:

Hydrody. b.l. thickness 0.371-x Re, > 5 x 10°

P (e,

Lecal friction coefficient

Cy = 0.0576-Re,

Re,>5x 105 Pr> 05

Local Nusselt number

Wl

N h, - x

Nu, =0.288-Rel® Pr

Re,>5x 105 Pr> 0.5

Average Friction coefficient

-1

Cyn = 0.072-Re

5% 10° < Rgy < 107

Average Friction coefficient

_ D455
”” (log(Re, >

107 < Reg; < 10°

Flat Plate, mixed
boundary iayer:

Average Friction coefficient

0.074 1742

Cp = = _e_..
Re? t

L

5 x 10° < Re, < 107
Rex‘c=5><105

Comnd.
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4 1
Average Nusseit number Nu,, = % = {0.036-995 - B:}GJ-M‘3 0.6 < Pr< 60,
5 x 10° < Rg, < 107
Cylinder in cross flow: 100 < Re < 1¢7
4
11 55
h-D 0.62-Re?-Pr? Re s
A N it be Nu, . =-— =03 11 Re.Pr> 0.2
verage Nusselt number oy = + o + [28200] >

(0.4 ]5
1+ =
Pr

Cyiinder in liquid metal
cross flow

Nug = 1.125-(Re- PA®'®  __for 1 < Re.Pr < 100

Flow across a sphere:

Comprehensive equation
of Whitaker.
Average Nusselt number

1 2
Nugy = 2 + {0.4-!?92 + 0.06-R93}-Pr““~[ﬁ]
H,

For gases & quuidé.

3.5 < Ae < 7.6.10*
0.71 < Pr < 380,
1 < gy, < 3.2

Falling drop:

Average Nusselt no.

11
Nuy,, = 2 + 0.6-Re” -Pr®

Flow across Tube bank:

Turbulent flow

{Rep > 2 x 109

Nu, = 0.021-Re 8. PP%. (Pypr Y2 for In-line tubes,

.25
ﬂ-J ..for staggered tubes, Pr>1

rw

Nu, = 0.022. Re 08¢ P [

Nu, = 0.019-Re P ®

N>20,and 0.7 < Pr

< 500, 1000 < Rep .,
<2 x 10°

Flow across Tube banks:

Pressure drop

..for staggered tubes, Pr= 0.7

2 0.14
Ap=2mexN.(y_wJ Pa
P He

Grax = P+ Urnax

N = No. of transverse
rows

11
Friction factor in Eq. 9.118 |f=|0.25+ __ous -Rey*® ...Tor staggered tubes.
(s -0 |
[ o ]
g_ga.[i)
Friction factor in Eq. 9.118 [ f= { 0.044 + D -Rep®™  __for in-line tubes
[+]
[(ST _D)]DABHJS‘S—L -
L D
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1

1 h-D _ 1 2 1
Flow through packed beds;| —2 = 1£-[O.S-Fie_g.‘, +0.2-Hegp}~Pr3 20 < Regy, < 10,000,
k £
Heat transfer between 0.34 < £< 0.78.
See text
gas and packings for definition of Rep,
and £
ha D [ 3 3 0.8 0.4 : H
Flow through packed beds: P 2.58-Aed,-Pr® + 0.094-Rey,’ -Pr For particles like
cylinders,
Heat transfer between see text for definition
walls of bed and gas of Rep,
h,-D 1 1

Flow through packed beds:

Heat transfer between
walls of bed and gas

k

2 = 0.203 Red, Pr® + 0.220. Rel - Pro

For particles like
spheres, 40 < Rep, < 2000

see text for definition
of Rep,

Flow inside tubes:
Hydrodynamic and
thermal entry lengths

Ly, lam = 0.05-Ae-D
L( jam = 0.05-Re.Pr.D

Lywt = Liuw =

10-0

Re < 2300...laminar
Ae > 4000.. turbulent

Darcy-Weisbach
equation for pressure
drop

Ap _ 1 pup
L D 2

Friction factor

= 4
Re,

Laminar flow in tubes

Flow inside tubes:

Nusselt no. for fully
developed laminar flow,
constant wall heat flux

h-D

Nuy = —
DT Tk

=4,

364

Pr> 06

Flow inside tubes:

Nusselt no. for fully

developsad laminar flow,
constant wall temperature

h-D

Nup= —
D™k

= 3.66

Pr>06

Flow inside short tubes:

Nusselt no. for fully
developed velocity profite,
laminar flow, constant wall
temperature

Nu,,, = 3.66 +

0.0668 (%)-Re-Pr

L Pr>07

1+0.04-[(%}R&Pr:|3

2

D < 60

Flow inside short tubes:

Nusselt no. for fully
developed velocity profite,
laminar flow, constant wall
temperature..Sieder &
Tate refation.

Wl
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0.48 < Pr < 16,700
0.0044 < (/1) <9.75

Flow ingide short tubes:

Local Nusselt no. for fully
developed velocity profile,
laminar fiow, constant
wall heat flux.

0.023-(~?]-Re-Pr

1+ 0.0012'[[%]~99~Pr}

Nu=4.236 + P> 0.7

Flow inside tubes:
Friction factor for smooth

pipes

f=0.316-Re"% _ for2 x10* < Re < B < 10°
f=0.184 Re™°? . for 10* < Re < 10°,
f= (0.79-In{Re) — 1.64)2 ...for 3000 < Re < 5 x 10°

Fiow inside tubes:

Friction factor for rough _ 1.325 Relative roughness,
i = 2 i
pipe o), 574 (/D) is known
37D) Re°®
h Nu f
Reynold's anal St= = o -
v o pCpu, Re, Fr 8
2 f
Colburn analogy St-Pré = 3

Flow inside tubes:
Turbuient flow:

Nusselt number

Nu = 0.023-Re"®.Pr" | _for 0.7 < Pr< 160, Re > 10,000
n = 0.4 when fluid is being heated, and
n = 0.3 when fluid is being coocled

Dittus—BoeHer equation
0.6 < Pr< 160
Re > 10,000 /D> 10

Flow inside tubes:
Turbent flow:
Nusselt number,
when there is
property variation

Hp

1 0.14
Nu = 0.027 .Re®®-Pr’ (;’J
F-3

Sleder— Tate eqn.
0.7 < Pr < 16,700,

6000 < Re < 107

Flow inside tubes:
Turbulent flow:
Nusselt number

Nu =

(s} B

0.5
1.o7+12.7.[%] (prost _qy \Hs

Fits the experimental
data better; n=0.11 for

heating of ftuids, n=
0.25 for cooling of fluids,
n =0 for constant heat
Hux, s,/ 4, =T, 1Ty,
temperature in Kelvin

Fiow of liquid metals
inside smooth pipes:
constant surface heat flux.

Nu = 4.82 + 0.0185. P57

3600 < Re <9.05 x 10%,
100 < Pe < 10,000

Flow of liquid metals
inside smooth pipes:
constant surface heat flux.

Nu = 6.3 + (0.0167-Re"®.pr0%)

Recent correlation
which fits experimental
data better.
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Flow of liquid metals Nu = 5.0 + 0.025-Pe™® _.for T, = constant, Pe > 100.
inside smooth pipes:
constant surface

temperature.

Helically colied tubes: NU, noica 21 \(D D = diameter of tube

Turbulent flow: No. 1 R )l d. d,, = diameter of helix
a_straight (3

Hausen's relation

0.12 Summary

Convection is the mode of heat transfer with fluid motion. If the fluid motion is caused by density differences as
a result of temperature differences, then it is called ‘matural convection’; instead, if the fluid motion is imposed
due to a pump or fan, then it is called ‘forced convection’. Also, the flow may be ‘laminar’ or ‘turbulent’; in
laminar flow, the flow is ‘ordered’ and the different layers of fluid flow parallel to each other in an orderly
manner. In turbulent flow, the flow is ‘chaotic’ and the flow is highly disordered and there is ‘mixing’ between
different layers of fluid as a result of chunks of fluid {‘eddies’) moving between layers. Dimensionless number
that characterizes the flow as laminar or turbulent is the Reynolds number.

In this chapter, we studied the principles of forced convection and stated a few correlations for external flow
on flat plates, cylinders and spheres, and also for internal flow through circular and non-circular pipes.

Mathematical analysis of convection problem is complicated since the temperature profile has to be solved
in conjunction with the fluid flow relations. ‘Boundary layer concept’ simplifies this problem to some extent.
Boundary layer is a very thin, stagnant fluid layer that adheres to fhe wall surface wherein the velocity and
temperature gradients are significant. Thus, the flow field is considered to be made up of two regions, one ‘a
boundary layer region’ and the other, an ‘inviscid region’. Derivation of boundary layer equations and their
solution to the simple case of a flat plate was explained in some detail. Further simplification with the method of
integral equations was also demonstrated.

Central problem in convection heat transfer situation is to find out the heat transfer coefficient, . Heat
transfer coefficient is generally represented in terms of the dimensionless Nusselt number, Nu. So, in the analysis,
our aim js to get a relation for Nusselt number. By ‘Dimensional Analysis’, it was shown that in forced convec-
tion, Nusselt number is expressed as function of Reynolds and Prandtl numbers.

We are also interested in the drag force between the fluid and the plate and the pressure drop occurs in the
pipe if a fluid is flowing through it. This is related to the shear stress at the walls, which in turn, is expressed in
terms of a ‘skin friction coefficient’ for the flat plate and a ‘friction factor’ for internal flow through a pipe. We
solve the momentum equation to get the shear stress and the friction coefficient, and by solving the energy
equation we get the temperature profile and thus the heat transfer coefficient.

There is a similarity in the governing equations of momentum and energy transfer. This leads to the idea of
‘analogy between momentum and heat transfer’ and we have extremely useful analogies such as Reynolds anal-
ogy and Colburn analogy. Particularly for rough tubes, an estimate of heat transfer coefficient is easily made just
by the knowledge of friction coefficient, with the help of these analogies. ’

Most of the convection correlations are empirical, deduced as result of large amount of experimental data.
Several empirical correlations for laminar as well as turbulent, forced convection, for many practically important
situations have been presented in this chapter.

In the next chapter, we study about heat transfer with natural convection.

Questions

1. Explain the difference between natural and forced convection in laminar and turbulent fiow. M.U]
2. Write short notes on hydrodynamic and thermal boundary layers. What is the importance of these boundary
layers in heat transfer? [M.U]

3. Explain the principle of dimensional analysis. ‘What are its advantages and limitations?
M.U]
4. State Buckingham mtheorem. ' MU}
5. Using dimensional analysis, derive an expression for heat transfer coefficient in forced convection in terms of
Nusselt number, Reynolds number and Prandtl numbers. M.U]
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6. Explain the physical significance of: (a) Reynolds number (b} Prandtl number, and {c) Nusselt number [M.U.]

7. Write a short note on applications of dimensional analysis. - ‘ [M.U]

8. Write a short note on Reynolds analogy between momentum and heat transfer, with teference to a flat plate.
MU]

9. In flow across a cylinder, what is meant by friction drag and pressure drag? At what point on the cylinder is the
heat transfer maximum?

10. Show that for flow inside a circular tube, Reynolds number can be written as:

Re = 4m/{(m.D.u)

11. State the generally accepted values of critical Reynolds numbers at which the flow changes from laminar to
turbulent for: (a) a flat plate (b) flow across a circular cylinder (c) flow across a sphere, and (d) flow inside a
circular pipe.

12. Comment on the hydredynamic and thermal entry lengths for laminar and turbulent flows for an oil inside a
circular pipe. How would they compare for a liquid metal?

i3. What is the difference between friction factor and friction coefficient?

14. How is pressure drop in a tube related to the friction factor?

15. In a circular tube, where is the heat transfer coefficient higher, at the entry or exit? Why?

16. Does the roughness of tube surface affect the heat transfer in (a) laminar flow (b) turbulent flow. Explain your
answer.

Problems

L. Glycerine at 10°C flows over a flat plate, 6 m long, maintained at 30°C with a velodity of 1.5 m/s. Determine the
total drag force and the heat transfer rate over the entire plate per unit width. Properties of glycerine at 20°C are:
2 =1264 kg/m®, v= 1180 x 1075 m?/s, Pr = 12,500, k = 0.2861 W/ (mK) and C, = 2387 }/(kgK).

2. Water at at 30°C is flowing with a velocity of 4 m/s along the length of a long, flat plate, 0.3 m wide, maintained
at 10°C.

{a) Calculate the following quantities at x = 0.3 m:
- (i) boundary layer thickness (i) local friction coefficient (iii) average friction coefficient (iv) local shear
stress due to friction (v} thickness of thermal boundary layer (vi) local convection heat transfer coefficient
(vii) average heat transfer coefficient (viii) rate of heat transfer from the plate between x = 0 and x = x, by
convection, and (ix) total drag force on the plate between x =0 and x = 0.3 m :
(b) Aééso, find out the value of x, (i.e. the distance along the length at which the flow turns turbulent, Re, = 5 x
107).
Properties of water at a film temperature of 20°C are: p = 1000 kg/ m?,
v=1.006 x 107* m%/s, Pr = 7.02, k = 1.5978 W/ (mK) and C, = 4178 J/(kgK).

3. Consider water flowing at 30°C over a flat plate 1 m x 1m size, maintained at 10°C with a free stream velocity of
0.5 m/s. Plot the variation of local heat transfer coefficient along the length if heating starts from 0.25 m from
the leading edge.

4. Air at a pressure of 3 atm. and 200°C flows over a flat plate (1 m long x 0.3 m wide), at a velocity of 7 m/s. If the
plate is maintained at 40°C, find out the rate of heat removed continuously from the plate. [Hint: heat is re-
moved from both the surfaces of the plate. Properties k, g, Pr do not vary much with pressure, but, p varies as
per the Ideal gas law, viz. p = p/(R.T), temperature in Kelvin.]

Properties of air at 1 atm. and a film temperature of 120°C are: p = 0.898 kg/m’,
v = 2545 x 107 m?/s, Pr = 0.686, k = 0.03338 W/ (mK) and C, = 1009 ]/ (kgK).

5. In problem 4, appiy the Colburmn anaiogy to estimate the drag force exerted on the plate.

6. Dry air at at atmospheric pressure and 30°C is flowing with a velocity of 2 m/s along the length of a flat plate,
(size: 1 m x 0.5 m}), maintained at 90°C.

Using Blasius exact solution, calculate the the heat transfer rate from:
(a) the first half of the plate (b) full plate, and (c} next half of plate.

7. Air at 25°C and atmospheric pressure is flowing with a velocity of 2.5 m/s along the length of a flat plate,
maintained at 55°C. Calculate:

{i) hydrodynamic boundary layer thickness at 20 cm and 40 cm from the leading edge by the approximate
method (ii) mass entrainment rate between these two sections assuming a cubic velocity profile, and (iii) heat
transferred from the first 40 cm of the plate.

8. An air stream at 20°C and atmospheric pressure, flows with a velocily of 4 m/s over an electrically heated flat

plate (size: 0.6 m x (.6 m), heater power being 1 kW. Calcuiate:
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10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.
21,

22

23.

(i) the average temperature difference along the plate {ii) heat transfer coefficient, and (jil) temperature of the
plate at the trailing edge

Sodium-Potassium alloy (23% + 75 %), at 250°C , flows with a velocity of 0.5 m/s over a flat plate (size: 0.3 m X
0.1 m), maintained at 550°C. Calculate:

(i) the hydrodynamic and thermal boundary layer thicknesses (ii} local and average value of friction coefficient
(iii) heat transfer coefficient, and (iv) total heat transfer rate

Properties of Na—k alloy ata film temerature of 400°C are: p = 775 kg/m3, v= 0.308 x 1078 m?/s, Pr = 0.0108, k
= 22.1 W/ {mK) and C, = 1000.6 J/(kgK).

A thin plate of length 2 m and width 1.5 m is exposed to a flow of air parallel to its surface along the 2 m side.
The velocity and temperature of the free stream flow of air are 3 m/s and 20°C respectively. The plate surface
temperature is 90°C. Determine the lengthwise mean local heat transfer coefficient at the end of the plate and
the amount of heat transferred. Take the following properties of air at 20°C:

v =15.06 x 107 m%/s, Pr = 0703, k = 00259 W/ (mK), and use the relation:

Nity, = 0.664. Rel3. Pr'/2, M.U]
A 10 cm diameter steam pipe, whose surface is at 90°C passes through an area where the wind is blowing across
the pipe at a velocity of 40 km/h at a temperature of 10°C and pressure of 1 atm. Determine the rate of heat loss
from the pipe per unit length.

A 6 mm diameter electrical cable carries a current of 60 Amp and its resistance is 0.002 ohm/metre. Determine
the surface temperature of the cable if air at a temperature of 10°C blows across the cable with a velocity of 50
km/h.

An incandescent bulb {60 W) can be considered as a sphere of 10 cm diameter. Only 10% of the energy supplied
s converted to light and the remaining 90% of the energy is converted to heat. T air at 20°C blows across the
bulb with a velocity of 25 m/s, determine the equilibrium temperature of the glass bulb.

A sphere suspended in an air stream is used as speed measuring device. A 12 mm diameter sphere, when
suspended in an air stream flowing at 40°C, maintains a surface temperature of 50°C, while dissipating an
electrical energy of 0.6 W. Calculate the air speed.

A 1.5 cm diameter ball bearing at a temperature of 100°C is cooled by passing water at a temperature of 15°C at
0.3 m/s aver it. Calculate the value of average surface heat transfer coefficient between the ball bearing and
water.

In a packed bed heat exchanget, ait is heated from 30°C to 370°C by passing it through a 10 cm diameter pipe,
packed with spheres of 6 mm diameter. The flow rate is 18 kg/h. Pipe surface temperature is maintained at
420°C. Determine the length of bed required. (Hint: In this case, heat is transferred between the gas and the
walls of the bed}.

In a regenerator, (Imdiax2m long), spherical rock fillings of diameter = 25 mm, are used to heat up air. Void
fraction of this bed is 40%. Initially, the rock fillings are at 25°C and the air is at 85°C, flowing in the axal
direction with a flow rate of 1.2 kg/s. Calculate the value of heat transfer coefficient (Hint: In this case, heat is
transferred between the gas and the spherical fillings).

A tube 15 mm ID is maintained at a constant temperature of 60°C. Water is flowing inside the tube at a raie of
10 g/s. Temperature of water at entry is' 20°C and at a distance of 1 m from entry the temperature is 40°C.
Compute the average value of Nusselt number using the appropriate correlations.

Water at 20°C flows through a 15 mm 1D, 4 m long tube with a velocity of 2 m/s. Tube wall is maintained at 2
constant temperature of 90°C. What is the heat transfer coefficient and the total amount of heat transferred, if
the exit temperature of water is #0°C? Also, calculate the pressure drop.

ff, in problem 15, three Globe valves are introduced in the pipe line, what will be the new pressure drop value?
Water at 20°C flows through a 15 mm ID, 4 m long tube with a velocity of 2 m/s. Tube wall is maintained at a
constant heat flux by electrical heating. What is the heat transfer coefficient and the total amount of heat trans-
ferred, and the temperature of tube wall at the exit, if the exit temperature of water is 60°C?

Inn a heat exchanger, water flows through a long 2.2 cm 1D copper tube at a bulk velocity of 2 m/s and is heated
by steam condensing at 150°C on the outside of the tube. The water enters at 15°C and leaves at 60°C. Find the
heat transfer coefficient for water. Use the empirical relation: Nu = 0.023.Re%8.Pr®4. Physical properties of water
at the mean bulk temperature of 37.5°C are: p = 990 kg/ m?, p = 0.00069 kg/(ms), Pr = 0.0108, k = 0,63 W/(mK)
and C, = 4160 ]/ (kgK). MU]
A water heater consists of a thick walled tube of 20 mm [D and 40 mm OD, insulated on the outside surface.
Electrical heating within the wall provides uniform heat generation rate of 5% 10° W/m’. Water at a rate of
0.15 kg/s enters at 20°C and leaves at 70°C. Calculate the length of tube required. What is the local heat transfer
coefficient at the exit, if the inner wall surface temperature at exit is 80°C?
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24,

25.

26.

27.

28.

29.

30

31.

Water is flowing through a tube of 6 mm ID ata rate of 4 kg/s. A constant heat flux of 250 W per metre length
is provided at the surface. If the water enters at 20°C and exits at 70°C, what is the length of tube required? Also,
what is the surface temperature at exit?

Liquid sodium is to be heated from 170°C to 230°C at a rate of 2 kg/s in a 2.5 cm diameter tube, heated electri-
cally on its surface. (Constant heat flux). Calculate the length of tube required if the wall temperature is not to
exceed 280°C. Properties of sodium at average bulk temperature of 200°C are: p = 903 kg/m’, v = 0.506 x 107°
m’/s, Pr = 0.0075, k = 81.41 W/(mK) and Cp = 1327.2 [ /{kgK).

A square duct of 20 cm side carries cool air at 10°C over a length of 25 m. Average velocity at entrance is 1.5 m/
s. If the walls of duct are maintained at 30°C, determine the outlet temperature of air.

Water flows through a rough pipe of 40 mm ID and 3 m length. Relative roughness, (£/D) for pipe = 0.004. Inlet
temperature of water is 20°C and the inlet flow velocity is 1.5 m/s. Determine the outlet temperature and also
the pressure drop.

Consider a tube bank, made of tubes of 10 mm OD, in an in-line arrangement, longitudinal spacing and trans-
verse spacing being 15 mm and 17 mm respectively. Air is heated from 20°C to 40°C by pumping it through this
tube bank. Air approaches the tube bank with a velocity of 4 m/s, and the tube walls are maintained at a
constant temperature of 150°C. If there are 10 tube rows, what is the average heat transfer coefficient and the
pressure drop?

Water at 20°C flows across a tube bundle at a free stream velocity of 20 m/s. OD of the tubes is 8 cm. Longitu-
dinat and transverse spacings are 22.5 cm each. Tubes are in a staggered arrangement. If the tube surfaces are
maintained at 50°C, estimate the heat transfer coefficient.

Engine oil is to be cooled from 150°C to 90°C in an annulus of 15 mm ID and 30 mm OD. Flow velocity is 1 m/s.
Temperature of inside tube wall is maintained at 25°C. Determine the heat transfer coefficient and the length of
tube required. Properties of engine oil at a mean bulk temperature of 120°C are: p = 828 kg/m®, v=12 x 107
® m?/s, Pr = 175, k = 0.1349 W/ (mK) and C, = 2307 J/(kgK).

Water is flowing at the rate of 20 kg/min. through a tube of inner diameter 2.5 cm. The surface of the tube is
maintained at 100°C. If the temperature of water increases from 25°C to 55°C, find the length of tube required.
Following empirical relation can be used:

Nu = 0.023.Re"® Pr®%, Physical properties of water can be taken from the following table: [M.U]
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